I answered all of them except 2 for you to do
Hope this helps :))
Answer:
One extraction: 50%
Two extractions: 75%
Three extractions: 87.5%
Four extractions: 93.75%
Explanation:
The following equation relates the fraction q of the compound left in volume V₁ of phase 1 that is extracted n times with volume V₂.
qⁿ = (V₁/(V₁ + KV₂))ⁿ
We also know that V₂ = 1/2(V₁) and K = 2, so these expressions can be substituted into the above equation:
qⁿ = (V₁/(V₁ + 2(1/2V₁))ⁿ = (V₁/(V₁ + V₁))ⁿ = (V₁/(2V₁))ⁿ = (1/2)ⁿ
When n = 1, q = 1/2, so the fraction removed from phase 1 is also 1/2, or 50%.
When n = 2, q = (1/2)² = 1/4, so the fraction removed from phase 1 is (1 - 1/4) = 3/4 or 75%.
When n = 3, q = (1/2)³ = 1/8, so the fraction removed from phase 1 is (1 - 1/8) = 7/8 or 87.5%.
When n = 4, q = (1/2)⁴ = 1/16, so the fraction removed from phase 1 is (1 - 1/16) = 15/16 or 93.75%.
Answer:
Dry ice undergoes sublimation, an endothermic change at room temperature.
An orbital that penetrates into the region occupied by core electrons is less shielded from nuclear charge than an orbital that does not penetrate and therefore has a lower energy.
Explanation:
The only true statement from the given options is that "an orbital that penetrates into the region occupied by core electrons is less shielded from nuclear charge than an orbital that does not penetrate and therefore has a lower energy." Inner orbitals which are also known to contain core electrons feels the bulk of the nuclear pull on them compared to the outermost orbitals containing the valence electrons.
- The nuclear pull is the effect of the nucleus pulling and attracting the electrons in orbitals.
- This pull is stronger for inner orbitals and weak on the outer ones.
- The outer orbitals are said to be well shielded from the pull of the nuclear charge.
- Also, based on the quantum theory, electrons in the outer orbitals have higher energies because they occupy orbitals at having higher energy value.
Learn more:
brainly.com/question/1832385
#learnmoreBrainly
a=electronic equipment and jewelry