Answer:
a) The maximum possible heat removal rate = 2.20w
b) Fin length = 37.4 mm
c) Fin effectiveness = 89.6
d) Percentage increase = 435%
Explanation:
See the attached file for the explanation.
Answer:

Explanation:
The vessel is modelled after the First Law of Thermodynamics. Let suppose the inexistence of mass interaction at boundary between vessel and surroundings, changes in potential and kinectic energy are negligible and vessel is a rigid recipient.

Properties of water at initial and final state are:
State 1 - (Liquid-Vapor Mixture)





State 2 - (Liquid-Vapor Mixture)





The mass stored in the vessel is:



The heat transfer require to the process is:



Answer:
4 number answer is correct.
Answer:
I always thought it was so that the older wire could not have a problem and have another electrician must come back and fix it.
Explanation:
Answer:
The correct option is;
c. the exergy of the tank can be anything between zero to P₀·V
Explanation:
The given parameters are;
The volume of the tank = V
The pressure in the tank = 0 Pascal
The pressure of the surrounding = P₀
The temperature of the surrounding = T₀
Exergy is a measure of the amount of a given energy which a system posses that is extractable to provide useful work. It is possible work that brings about equilibrium. It is the potential the system has to bring about change
The exergy balance equation is given as follows;
![X_2 - X_1 = \int\limits^2_1 {} \, \delta Q \left (1 - \dfrac{T_0}{T} \right ) - [W - P_0 \cdot (V_2 - V_1)]- X_{destroyed}](https://tex.z-dn.net/?f=X_2%20-%20X_1%20%3D%20%5Cint%5Climits%5E2_1%20%7B%7D%20%5C%2C%20%5Cdelta%20Q%20%5Cleft%20%281%20-%20%5Cdfrac%7BT_0%7D%7BT%7D%20%5Cright%20%29%20-%20%5BW%20-%20P_0%20%5Ccdot%20%28V_2%20-%20V_1%29%5D-%20X_%7Bdestroyed%7D)
Where;
X₂ - X₁ is the difference between the two exergies
Therefore, the exergy of the system with regards to the environment is the work received from the environment which at is equal to done on the system by the surrounding which by equilibrium for an empty tank with 0 pressure is equal to the product of the pressure of the surrounding and the volume of the empty tank or P₀ × V less the work, exergy destroyed, while taking into consideration the change in heat of the system
Therefore, the exergy of the tank can be anything between zero to P₀·V.