Answer:
$$\begin{align*}
P(Y-X=m | Y > X) &= \sum_{k} P(Y-X=m, X=k | Y > X) \\ &= \sum_{k} P(Y-X=m | X=k, Y > X) P(X=k | Y > X) \\ &= \sum_{k} P(Y-k=m | Y > k) P(X=k | Y > X).\end{split}$$
Explanation:
\eqalign{
P(Y-X=m\mid Y\gt X)
&=\sum_kP(Y-X=m,X=k\mid Y\gt X)\cr
&=\sum_kP(Y-X=m\mid X=k,Y\gt X)\,P(X=k\mid Y>X)\cr
&=\sum_kP(Y-k=m\mid Y\gt k)\,P(X=k\mid Y\gt X)\cr
}
P(Y-X=m | Y > X) &= \sum_{k} P(Y-X=m, X=k | Y > X) \\ &= \sum_{k} P(Y-X=m | X=k, Y > X) P(X=k | Y > X) \\ &= \sum_{k} P(Y-k=m | Y > k) P(X=k | Y > X).\end{split}$$
Answer: Because MM's CEO, Crosscut Sal, is a stickler for keeping machinery running, the company stocks quick-change replacement modules for the two most common ..
Explanation:
Answer:
I always thought it was so that the older wire could not have a problem and have another electrician must come back and fix it.
Explanation:
Answer:
<em>No, the velocity profile does not change in the flow direction.</em>
Explanation:
In a fluid flow in a circular pipe, the boundary layer thickness increases in the direction of flow, until it reaches the center of the pipe, and fill the whole pipe. If the density, and other properties of the fluid does not change either by heating or cooling of the pipe, <em>then the velocity profile downstream becomes fully developed, and constant, and does not change in the direction of flow.</em>