1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Irina-Kira [14]
3 years ago
7

From your cooling load (8890.007 Btu/hr = 2.605kW, determine mass flow rate of refrigerants. Use the following "rule of thumb" e

stimate of a standard room of size 180 ft^2: 1 ton of refrigerant = 12,000Btu = 3.517 kW Rule of thumb: 1 ton cooling load = 300-400 ft^2
Engineering
1 answer:
NeX [460]3 years ago
7 0

Answer:

0.740833917 ton/hr

Explanation:

Given:

Cooling load, 8890.007 Btu/hr = 2.605 kW

Room size = 180 ft^{2}

According to the thumb rule

1 ton of refrigerant = 12000Btu

Hence for 8890.007 Btu/hr,

the mass flow rate of the refrigerant is =8890.007 / 12000

                                                                = 0.740833917 ton per hr

Hence, mass flow rate is 0.740833917 ton/hr

You might be interested in
When the psychologist simply records the relationship between two variables...
Wewaii [24]
When a psychologist simply records the relationship between two variables without manipulating them, it is called a correlational study.

The observed relationship does not by itself reveal which variable causes the other. This is the directionally problem. Also, the relationship may be due to a third variable controlling both of the observed variables.
8 0
3 years ago
Should the ship breaking business continue why or why not?
Dmitry [639]

Answer:

Ship-breaking or ship demolition is a type of ship disposal involving the breaking up of ships for either a source of parts, which can be sold for re-use, or for the extraction of raw materials, chiefly scrap. It may also be known as ship dismantling, ship cracking, or ship recycling. Modern ships have a lifespan of 25 to 30 years before corrosion, metal fatigue and a lack of parts render them uneconomical to operate.[1] Ship-breaking allows the materials from the ship, especially steel, to be recycled and made into new products. This lowers the demand for mined iron ore and reduces energy use in the steel making process. Fixtures and other equipment on board the vessels can also be reused. While ship-breaking is sustainable, there are concerns about the use of poorer countries without stringent environmental legislation. It is also labor-intensive, and considered one of the world's most dangerous industries.[2]

In 2012, roughly 1,250 ocean ships were broken down, and their average age was 26 years.[3][4] In 2013, the world total of demolished ships amounted to 29,052,000 tonnes, 92% of which were demolished in Asia. As of January 2020, India has the largest global share at 30%;[5] followed by Bangladesh, China and Pakistan.[6] Alang, India currently has the world's largest ship graveyard,[5] followed by Chittagong Ship Breaking Yard in Bangladesh and Gadani in Pakistan.[6]

The largest sources of ships are states of China, Greece and Germany respectively, although there is a greater variation in the source of carriers versus their disposal.[7] The ship-breaking yards of India, Bangladesh, China and Pakistan employ 225,000 workers as well as providing many indirect jobs. In Bangladesh, the recycled steel covers 20% of the country's needs and in India it is almost 10%.[8]

As an alternative to ship-breaking, ships may be sunk to create artificial reefs after legally-mandated removal of hazardous materials, or sunk in deep ocean waters. Storage is a viable temporary option, whether on land or afloat, though all ships will be eventually scrapped, sunk, or preserved for museums.

6 0
3 years ago
HELP PLS Leaders usually start as
Kazeer [188]
Team members and the work from ther
8 0
2 years ago
Look at the home page of the Internet Society (www.internetsociety.org) and read about one of the designers of the original ARPA
krek1111 [17]

Answer:

<u>ARPANET is the direct precedent for the Internet, a network that became operational in October 1969 after several years of planning. </u>

Its promoter was DARPA (Defense Advanced Research Projects Agency), a US government agency, dependent on the Department of Defense of that country, which still exists.

Originally, it connected research centers and academic centers to facilitate the exchange of information between them in order to promote research. Yes, being an undertaking of the Department of Defense, it is understood that weapons research also entered into this exchange of information.

It is also explained, without being without foundation, that the design of ARPANET was carried out thinking that it could withstand a nuclear attack by the USSR and, hence, probably the great resistance that the network of networks has shown in the face of major disasters and attacks.

It was the first network in which a packet communication protocol was put into use that did not require central computers, but rather was - as the current Internet is - totally decentralized.

Explanation:

<em><u> Below I present as a summary some of the most relevant aspects exposed on the requested website about the origin and authors of ARPANET:</u></em>

<em><u></u></em>

1. Licklider from MIT in August 1962 thinking about the concept of a "Galactic Network". He envisioned a set of globally interconnected computers through which everyone could quickly access data and programs from anywhere. In spirit, the concept was very much like today's Internet. He became the first head of the computer research program at DARPA, and from October 1962. While at DARPA he convinced his successors at DARPA, Ivan Sutherland, Bob Taylor and MIT researcher Lawrence G. Roberts, of the importance of this network concept.

2.Leonard Kleinrock of MIT published the first article on packet-switching theory in July 1961 and the first book on the subject in 1964. Kleinrock convinced Roberts of the theoretical feasibility of communications using packets rather than circuits, That was an important step on the road to computer networking. The other key step was to get the computers to talk together. To explore this, in 1965, working with Thomas Merrill, Roberts connected the TX-2 computer in Mass. To the Q-32 in California with a low-speed phone line creating the first wide-area (albeit small) computer network built . The result of this experiment was the understanding that timeshare computers could work well together, running programs and retrieving data as needed on the remote machine, but that the circuitry switching system of the phone was totally unsuitable for the job. Kleinrock's conviction of the need to change packages was confirmed.

3.In late 1966 Roberts went to DARPA to develop the concept of a computer network and quickly developed his plan for "ARPANET", and published it in 1967. At the conference where he presented the document, there was also a document on a concept of UK packet network by Donald Davies and Roger Scantlebury of NPL. Scantlebury told Roberts about NPL's work, as well as that of Paul Baran and others at RAND. The RAND group had written a document on packet switched networks for secure voice in the military in 1964. It happened that work at MIT (1961-1967), in RAND (1962-1965) and in NPL (1964-1967) all they proceeded in parallel without any of the investigators knowing about the other work. The word "packet" was adopted from the work in NPL and the proposed line speed to be used in the ARPANET design was updated from 2.4 kbps to 50 kbps.

6 0
3 years ago
The hot combustion gases of a furnace are separated from the ambient air and its surroundings, which are at 25 oC, by a brick wa
yanalaym [24]

Answer:

T1 = 625.54 K

Explanation:

We are given;

T_α = Tsur = 25°C = 298K

h = 20 W/m².K,

L = 0.15 m

K = 1.2 W/m.K

ε = 0.8

Ts = T2 = 100°C = 373K

T1 = ?

Assumption:

-Steady- state condition

-One- dimensional conduction

-No uniform heat generation

-Constant properties

From Energy balance equation;

E°in - E°out = 0

Thus,

q"cond – q"conv – q"rad = 0

K[(T1 - T2)/L] - h(Ts-T_α) - εσ (Ts⁴ – Tsur⁴)

Where σ is Stephan-Boltzmann constant and has a value of 5.67 x 10^(-8)

Thus;

K[(T1 - T2)/L] - h(Ts-T_α) - εσ (Ts⁴ – Tsur⁴) = 1.2[(T1 - 373)/0.15] - 20(373 - 298] - 0.8x5.67x10^(-8)[373⁴ - 298⁴] = 0

This gives;

(8T1 - 2984) - (1500) - 520.31 = 0

8T1 = 2984 + 1500 + 520.31

8T1 = 5004.31

T1 = 5004.31/8

T1 = 625.54 K

7 0
2 years ago
Other questions:
  • A thin-walled tube with a diameter of 6 mm and length of 20 m is used to carry exhaust gas from a smoke stack to the laboratory
    7·1 answer
  • Define Plastic vs elastic deformation.
    13·1 answer
  • Air expands through a turbine operating at steady state. At the inlet p1 = 150 lbf/in^2, T1 = 1400R and at the exit p2 = 14.8 lb
    10·1 answer
  • Wet steam at 15 bar is throttled adiabatically in a steady-flow process to 2 bar. The resulting stream has a temperature of 130°
    7·1 answer
  • Air initially at 120 psia and 500o F is expanded by an adiabatic turbine to 15 psia and 200o F. Assuming air can be treated as a
    10·1 answer
  • What is the key to being a good engineer?
    15·2 answers
  • What process is used to remove collodal and dissolved organic matter in waste water ​
    10·1 answer
  • Materials to be used to build a watch tower​
    9·1 answer
  • Most equipment is cooled by bringing cold air in the front and ducting the heat out of the back. What is the term for where the
    9·1 answer
  • 15- Vipsana's Gyros House sells gyros. The cost of ingredients (pita, meat, spices, etc.) to make a gyro is $2.00. Vipsana pays
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!