the answer is d electronic balance
Answer:
Explanation:
Given parameters:
Molarity of KOH = 0.26M
Volume of H₂SO₄ = 19.76mL
Molarity of H₂SO₄ = 0.20M
Unknown:
Volume of KOH = ?
Solution:
This is a neutralization reaction in which an acid reacts with a base to produce salt and water:
H₂SO₄ + 2KOH → K₂SO₄ + 2H₂O
We solve from the known to the unknown in the reaction.
The known is the acid and from there we can find the number of moles of the acid to be completely neutralized:
Number of moles of acid = molarity x volume
Number of moles of acid = 19.76 x 0.20 = 3.95mol
From the balanced reaction equation:
1 mole of acid reacts with 2 moles of the bases KOH
3.95mole of acid would react with 3.95moles x 2 of the base
Number of moles of reacting base = 7.90moles
To find the volume of base;
Volume of base = 
Volume =
= 30.40mL
Learn more:
Neutralization brainly.com/question/6447527
#learnwithBrainly
Answer:
B
Explanation:
because it is being cooled down
hoped this helps
Answer:
Neutrons = ( Atomic mass – Atomic number ) ( A–Z )
Protons and Electrons are equal to the atomic number
For example Neon,
Mass number (A) = 20
Atomic Number (Z) = 10
Number of Protons = 10
Number of Electrons = 10
Number of Neutrons = ( A–Z ) = 10
Electronic distribution :
K= 2
L= 8
Explanation:
Assuming that moles of nitrogen present are 0.227 and moles of hydrogen are 0.681. And, initially there are 0.908 moles of gas particles.
This means that, for
moles of
+ moles of
= 0.908 mol
Since, 2 moles of
=
= 0.454 mol
As it is known that the ideal gas equation is PV = nRT
And, as the temperature and volume were kept constant, so we can write
=
= 
=
= 5.2 atm
Therefore, we can conclude that the expected pressure after the reaction was completed is 5.2 atm.