True is the correct anwser
Range of a projectile motion is given by
R = v cos θ / g (v sin θ + sqrt(v^2 sin^2 θ + 2gy_0)); where R = 188m, θ = 41°, g = 9.8m/s^2, y_0 = 0.9
188 = v cos 41° / 9.8 (v sin 41° + sqrt(v^2 sin^2 41° + 2 x 9.8 x 0.9)) = 0.07701(0.6561v + sqrt(0.4304 v^2 + 17.64)) = 0.05053v + 0.07701sqrt(0.4304v^2 + 17.64)
0.07701sqrt(0.4304v^2 + 17.64) = 188 - 0.05053v
0.005931(0.4304v^2 + 17.64) = 35344 - 19v + 0.002553v^2
0.002553v^2 + 0.1046 = 35344 - 19v + 0.002553v^2
19v = 35344 - 0.1046 = 35343.8954
v = 35343.8954/19 = 1860 m/s
Answer:
Explanation:
according to third equation of motion
2as=vf²-vi²
vf²=2as+vi²
vf=√2as+vi²
vf=√2as+vi
vf=√2*2*4+3
vf=√16+3
vf=4+3=7
so final velocity is 7 m/s
Answer: A Neutron.
I know this is correct. Thank's and yw :3
Answer:
You are given that the mass of the clock M is 95 kg.
This is true whether the clock is in motion or not.
Fs is the frictional force required to keep the clock from moving.
Thus Fk = uk W = uk M g the force required to move clock at constant speed. (the kinetic frictional force)
uk = 560 N / 931 N = .644 since the weight of the clock is 931 N (95 * 9.8)
us is the frictional force requited to start the clock moving
us = static frictional force = 650 / 931 -= .698