Assume the wooden piece prevents the balloon from rising, is not so heavy as to cause the balloon to descend. and the 15 m/s is horizontal velocity “riding the wind,” That horizontal velocity does not affect the time the wood will take to reach the ground after release. Initial vertical velocity is zero.
s = u t + 1/2 g t^2
s is the height above ground, 300 m.
u is initial vertical velocity, zero.
t is time to reach the ground.
g is acceleration of gravity near Earth, 9.8 m/s^2.
300 m = 0 t + 1/2 (9.8 m/s^2) t^2
300 m = (4.9 m/s^2) t^2
61.22 s^2 = t^2
7.82 seconds = t
The fronts of the water create clouds so it has a lot of precipitation
Question:
The operations manager for a well-drilling company must recommend whether to build a new facility, expand his existing one, or do nothing. He estimates that long-run profits (in $000) will vary with the amount of precipitation (rainfall) as follows:
Alternative Precipitation
Low Normal High
Do nothing -100 100 300
Expand 350 500 200
Build new 750 300 0
If he feels the chances of low, normal, and high precipitation are 30 percent, 20 percent, and 50 percent respectively, What is EVPI (Expected value of Perfect Information)?
A. $140,000
B. $170,000
C. $285,000
D. $305,000
E. $475,000
Answer:
D. $170,000
Explanation:
The expected long run profits are for
Low Normal High
Do nothing -100*0.3 100*0.2 300*0.5 = 140
Expand 350*0.3 500*0.2 200*0.5 = 305
Build new 750*0.3 300*0.2 0*0.5 = 285
Therefore the expected long run profits are
$140,000
$305,000
$285,000
Based on his selected option being either to build new or to expand, the most profitable option is to expand
=$305,000
EVPI = EPPI-EMV =$170,000
Answer:
D. 0.1
Explanation:
Using transformer equation,
N2/N1 = I1/I2................... Equation 1
Where N2 = secondary coil, N1 = primary coil, I1 = input current, I2 = output current.
make I2 the subject of the equation
I2 = I1/(N2/N1)............ Equation 2
From equation 2 above, For the output current of the secondary coil to be 10 times the input current, N2/N1 = 0.1
Hence the right option is D. 0.1
A.draw in the forces .Use the scale 1cm =10n of force