Answer:

Explanation:
The formula for force is:

If we rearrange the formula to solve for a (acceleration), the formula becomes

The force is 68 Newtons. Let's convert the units to make the problem easier later on. 1 N is equal to 1 kg*m/s², so the force of 68 N is equal to 68 kg*m/s².
The mass is 2 kilograms.

Substitute the values into the formula.

Divide. Note that the kilograms will cancel each other out (hence why we changed the units).


The acceleration is<u> </u><u>34 meters per second squared.</u>
IMA = Ideal Mechanical Advantage
First class lever = > F1 * x2 = F2 * x1
Where F1 is the force applied to beat F2. The distance from F1 and the pivot is x1 and the distance from F2 and the pivot is x2
=> F1/F2 = x1 /x2
IMA = F1/F2 = x1/x2
Now you can see the effects of changing F1, F2, x1 and x2.
If you decrease the lengt X1 between the applied effort (F1) and the pivot, IMA decreases.
If you increase the length X1 between the applied effort (F1) and the pivot, IMA increases.
If you decrease the applied effort (F1) and increase the distance between it and the pivot (X1) the new IMA may incrase or decrase depending on the ratio of the changes.
If you decrease the applied effort (F1) and decrease the distance between it and the pivot (X1) IMA will decrease.
Answer: Increase the length between the applied effort and the pivot.
Explanation:
6. Converge or come together
7. convex
The second option is the correct one. m/s^2
Answer:

Explanation:
What problem says can be written mathematically as:

Where:

The problem itself it's really simple, we only need to replace the data provided in the previous equation, but first, let's convert the units of the velocity from cm/s to m/s because we have to work with the same units and working in meters is the most apropiate action, because is the base unit of length in the International System of Units:

Now, we can replace the data in the equation and find the time it will take the bird to travel 3.7 m:

Solving for t, multiplying by t both sides, and dividing by 0.52 both sides:
