Answer:
The amount of acid in third container is =42%
Step-by-step explanation:
Given , one container is filled with a mixture that is 30% acid a second container filled with a mixture that is 50% acid and the second container 50% larger than the first .
Let, the volume of first container is = x
Then , the volume of second container = (x+ x of 50%)
= x + 0.5 x
= 1.5 x
Therefore the amount of acid in first container
= 0.3 x
The amount of acid in second container
= 0.75x
Total amount of acid= 0.3x + 0.75x = 1.05 x
Total amount of solution = x+1.5x = 2.5x
The amount of acid in third container is =
%
= 42%
Sqrt(80) = Sqrt(16) x sqrt(5)
= 4 x sqrt(5)
Let's consider the scenario after each year:
After the zeroth year, the population is: 120 000(1 + 0.04)⁰
After the first year, the population is: 120 000(1 + 0.04)¹
After the second year, the population is: 120 000(1 + 0.04)²
...
Thus, we can find the general rule:
After the nth year, the population is: 120 000(1 + 0.04)ⁿ
And after the 16th year, the population is 120 000(1 + 0.04)¹⁶ = 224 758 (rounded to nearest whole number)