Answer:
1.F is the electrostatic force between charges (in Newtons),
2.q₁ is the magnitude of the first charge (in Coulombs),
3.q₂ is the magnitude of the second charge (in Coulombs),
4.r is the shortest distance between the charges (in m),
5.ke is the Coulomb's constant. It is equal to 8.98755 × 10⁹ N·m²/C² .
Well we know the correct answer cannot be "a" bcause velocity is tangent to the circlular path of an object experienting centripical motion. Velocity DOES NOT point inward in centripical motion.
we know the correct answer cannot be "b" because "t" stands for "time" which cannot point in any direction. so, time cannot point toward the center of a circle and therefore this answer must be incorrect.
I would choose answer choice "c" because both force and centripical acceleration point toward the center of the circle.
I do not think answer choice "d" can be correct because the velocity of the mass moves tangent to the circle. velocity = (change in position) / time. Therefore, by definition the mass is moving in the direction of the velocity which does not point to the center of the circle.
does this make sense? any questions?
Answer:
A pi bond
Explanation:
A pi bond is a type of covalent bond that results from the formation of a molecular orbital by the side-to-side overlap of atomic orbitals along a plane perpendicular to a line connecting the nuclei of the atoms.
<h2><em>So there is two truths given. After an amount of time Ttotal (lets call it ‘t’):
</em></h2><h2><em>
</em></h2><h2><em>The car’s speed is 25m/s
</em></h2><h2><em>The distance travelled is 75m
</em></h2><h2><em>Then we have the formulas for speed and distance:
</em></h2><h2><em>
</em></h2><h2><em>v = a x t -> 25 = a x t
</em></h2><h2><em>s = 0.5 x a x t^2 -> 75 = 0.5 x a x t^2
</em></h2><h2><em>Now, we know that both acceleration and time equal for both truths. So we can say:
</em></h2><h2><em>
</em></h2><h2><em>t = 25 / a
</em></h2><h2><em>t^2 = 75 / (0.5 x a) = 150 / a
</em></h2><h2><em>Since we don’t want to use square root at 2) we go squared for 1):
</em></h2><h2><em>
</em></h2><h2><em>t^2 = (25 / a) ^2 = 625 / a^2
</em></h2><h2><em>t^2 = 150 / a
</em></h2><h2><em>Since t has the same value for both truths we can say:
</em></h2><h2><em>
</em></h2><h2><em>625 / a^2 = 150 / a
</em></h2><h2><em>
</em></h2><h2><em>Thus multiply both sides with a^2:
</em></h2><h2><em>
</em></h2><h2><em>625 = 150 x a, so a = 625 / 150 = 4.17
</em></h2><h2><em>
</em></h2><h2><em>We can now calculate t as well t = 25 * 150 / 625 = 6</em></h2>
Answer:
a

b

Explanation:
From the question we are told that
Their distance apart is 
The wavelength of each source wave 
Let the distance from source A where the construct interference occurred be z
Generally the path difference for constructive interference is

Now given that we are considering just the straight line (i.e points along the line connecting the two sources ) then the order of the maxima m = 0
so

=> 
=> 
Generally the path difference for destructive interference is

=> 
=> 
substituting values

=> 
So


and

=> 
=> 