Answer:
1. the electric potential energy of the electron when it is at the midpoint is - 2.9 x
J
2. the electric potential energy of the electron when it is 10.0 cm from the 3.00 nC charge is - 5.04 x
J
Explanation:
given information:
= 3 nC = 3 x
C
= 2 nC = 2 x
C
r = 50 cm = 0.5 m
the electric potential energy of the electron when it is at the midpoint
potential energy of the charge, F
F = k 
where
k = constant (8.99 x
)
electron charge,
= - 1.6 x
C
since it is measured at the midpoint,
r = 
= 0.25 m
thus,
F = 
= k
+ k
=
(
)
= (8.99 x
)( - 1.6 x
)(3 x
+2 x
)/0.25
= - 2.9 x
J
the electric potential energy of the electron when it is 10.0 cm from the 3.00 nC charge
= 10 cm = 0.1 m
= 0.5 - 0.1 = 0.4 m
F = k
+ k
=
(
+
)
= (8.99 x
)( - 1.6 x
)(3 x
/0.1+2 x
/0.4)
= - 5.04 x
J
Answer:
A) 0.660 g/ml
B) 1.297 ml
C) 0.272 g
Explanation:
Every substance, body or material has mass and volume, however the mass of different substances occupy different volumes. This is where density
appears as a physical characteristic property of matter that establishes a relationship between the mass
of a body or substance and the volume
it occupies:
(1)
Knowing this, let's begin with the answers:
<h2 /><h2>Answer A:</h2>
Here the mass is
and th volume
Solving (1) with these values:
(2)
(3)
<h2>Answer B:</h2>
In this case the mass of a sample is
and its density is
.
Isolating
from (1):
(4)
(5)
(5)
<h2>Answer C:</h2>
In this case the volume of a sample is
and its density is
.
Isolating
from (1):
(6)
(7)
(8)
I would say it reflects the sun easily. That’s also how we see it :)
Answer:
True
Explanation:
Matter can be in the form of a particle or a wave. This is known as the dual nature of matter. This concept was proposed by Louis de Broglie and was named after him. This phenomenon has been observed for all the elementary particles.
The de Broglie wavelength is given by

Where
h = Planck's constant
p = Particles momentum
m = Mass of particle
v = Velocity of particle
Answer:
F= 5.71 N
Explanation:
width of door= 0.91 m
door closer torque on door= 5.2 Nm
In order to hold the door in open position we need to exert an equal and opposite torque, to the door closer torque, on the door.
so wee need to exert 5.2 Nm torque on the door.
If we want to apply minimum force to exert the required torque we need to apply force perpendicularly on the door knob (end of door) so that to to greater moment arm.
T= r x F
T= r F sin∅
F= T/ (r * sin∅)
F= 5.2/ (0.91 * 1)
F= 5.71 N