In order to solve this problem it is necessary to apply the concepts related to intensity and specifically described in Malus's law.
Malus's law warns that

Where,
Angle between the analyzer axis and the polarization axis
Intensity of the light before passing through the polarizer
The intensity of the beam from the first polarizer is equal to the half of the initial intensity

Replacing with our the numerical values we get


Therefore the intensity of the light that emerges from the filter is 
Answer:
Magnetic field is in south west direction .
Explanation:
Let us represent various direction by i , j, k . i representing east , j representing north and k representing vertically upward direction .
magnetic field is represented vectorially as follows
B = B₀ ( - i - j )
In the first case velocity of electron
v = v k
Force = q ( v x B )
= -e [ vk x B₀ ( - i - j ) ]
= evB₀ ( j -i )
Direction of force is north -west .
In the second case velocity of electron
v = vj
Force = -e [ vj x B₀ ( - i - j ) ]
= - evB₀ k
force is downward
In the third case, velocity of electron
v = v( -j +i )
Force = -e [ v( -j +i ) x B₀ ( - i - j ) ]
= 2 evB₀ k
Force is upward.
Explanation:
1.
We use the equation
h =
, where
h is the height traveled,
g is the acceleration due to gravity and
t is the time taken to reach height h.
We can now calculate t to be

= 0.495 s
Let v be the initial velocity of the player.
The player deaccelarates from v m/s to 0 m/s in 0.495 s at the rate of 9.81 m/s^2.
v = 9.81 m/s^2 x 0.495 s = 4.85 m/s
2.
The player takes 0.3 s to increase his velocity from 0 m/s to 4.85 m/s. So his average accelaration is
4.85 m/s / 0.3 s = 16.2 m/s^2
Search Results
Featured snippet from the web
Mechanical waves move energy through a medium by vibrating particles. Mechanical waves can't move energy through a vacuum because there is no matter inside of a vacuum. The three types of mechanical waves are transverse waves, surface waves, and longitudinal waves.
B. The Earth radiates an amount of energy into space equal to the amount it receives.
Part of the solar energy is reflected by the Earth into space, this is known as albedo. The other part of the energy radiated by the Earth in the form of infrared radiation, is absorbed by the greenhouse gases, which cause most of this infrared radiation to be emitted into space. Therefore, the net flow of energy is zero.