Dr. Inge discovered the make up of the earths inner core by studying how an earthquakes waves bounced off the core. And Inge Lehmann was studying the waves of a 1929 earthquake when she found them acting inconsistently with solid mantle crust
hope it helps you
Answer: Boyle found that when the pressure of a gas at a constant temperature is increased, the volume of the gas decreases. When the pressure of a gas is decreased, the volume increases. This relationship between pressure and volume it's called Boyle's law.
Explanation: In the 1600s, Boyle measured the volumes of gases at different pressures. Boyle found that when the pressure of a gas at a constant temperature is increased, the volume of the gas decreases. When the pressure of a gas is decreased, the volume increases. This relationship between pressure and volume it's called Boyle's law.
Answer : 413.44N
Here it is given that an elevator is moving down with an acceleration of 3.36 m/s² . And we are interested in finding out the apparent weight of a 64.2 kg man . For the diagram refer to the attachment .
- From the elevator's frame ( non inertial frame of reference) , we would have to think of a pseudo force.
- The direction of this force is opposite to the direction of acceleration the frame and its magnitude is equal to the product of mass of the concerned body with the acceleration of the frame .
- When a elevator accelerates down , the weight recorded is less than the actual weight .
From the Free body diagram ,
- Mass of the man = 64.2 kg
Answer:
Approximately
. (Assuming that the drag on this ball is negligible, and that
.)
Explanation:
Assume that the drag (air friction) on this ball is negligible. Motion of this ball during the descent:
- Horizontal: no acceleration, velocity is constant (at
is constant throughout the descent.) - Vertical: constant downward acceleration at
, starting at
.
The horizontal velocity of this ball is constant during the descent. The horizontal distance that the ball has travelled during the descent is also given:
. Combine these two quantities to find the duration of this descent:
.
In other words, the ball in this question start at a vertical velocity of
, accelerated downwards at
, and reached the ground after
.
Apply the SUVAT equation
to find the vertical displacement of this ball.
.
In other words, the ball is
below where it was before the descent (hence the negative sign in front of the number.) The height of this cliff would be
.