Answer:
A dekagram is thousand (1000) times larger than a centigram.
Explanation:
→ [1 dekagram = 1,000 centigrams]
→ 1 dekagram = 10 grams
→ 10 grams = 100 decigrams
→ 100 decigrams = 1,000 centigrams
Answer:
I believe the answer to be B.
Explanation:
Without food, the whales would die.
Answer:
26.67 m/s
Explanation:
From the law of conservation of linear momentum, the initial sum of momentum equals the final sum.
p=mv where p is momentum, m is the mass of object and v is the speed of the object
Initial momentum
The initial momentum will be that of basketball and volleyball, Since basketball is initially at rest, its initial velocity is zero

Final momentum

Answer:
depends on the voltage of battery
Explanation:
for example if you connect a battery of 6V,6V will be provided
Answer:
The value is 
Explanation:
From the question we are told that
The radius of the inner conductor is 
The radius of the outer conductor is 
The potential at the outer conductor is 
Generally the capacitance per length of the capacitor like set up of the two conductors is
![C= \frac{2 * \pi * \epsilon_o }{ ln [\frac{r_2}{r_1} ]}](https://tex.z-dn.net/?f=C%3D%20%5Cfrac%7B2%20%2A%20%5Cpi%20%2A%20%5Cepsilon_o%20%7D%7B%20ln%20%5B%5Cfrac%7Br_2%7D%7Br_1%7D%20%5D%7D)
Here
is the permitivity of free space with value 
=> ![C= \frac{2 * 3.142 * 8.85*10^{-12} }{ ln [\frac{0.003}{0.001} ]}](https://tex.z-dn.net/?f=C%3D%20%5Cfrac%7B2%20%2A%20%203.142%20%20%2A%208.85%2A10%5E%7B-12%7D%20%20%7D%7B%20ln%20%5B%5Cfrac%7B0.003%7D%7B0.001%7D%20%5D%7D)
=> 
Generally given that the potential of the outer conductor with respect to the inner conductor is positive it then mean that the outer conductor is positively charge
Generally the line charge density of the outer conductor is mathematically represented as

=> 
=> 
Generally the surface charge density is mathematically represented as
here 
=> 
=> 