Given the radius, circumference can be solved by the equation, C = 2πr. The circumference of the circle above is C = 2π(8 in) = 16<span>π in. To solve for the length of the segment joining the arc is the circumference times the ratio of central angle and 360 degrees.
Length of the segment = (16</span>π in)(60/360) = 8/3 <span>π in
Thus, the length of the segment is approximately 8.36 in. </span>
(-1-3i)(-6-i)
=6+i+18i+3i^2
=3i^2+19i+6. Hope it help!
Answer:
The second term of the sequence is 8 False ⇒ B
The third term of the sequence is 3 True ⇒ A
The fourth term of the sequence is -3 True ⇒ A
Step-by-step explanation:
The form of the recursive rule is:
f(1) = first term; f(n) = f(n - 1) + d, where
- f(n - 1) is the term before the nth term
- d is the common difference
∵ f(1) = 15, f(n) = f(n - 1) - 6 for n ≥ 2
∴ The first term = 15
∴ d = -6
let us find the 2nd, 3rd, and 4th terms
∵ n = 2
∴ f(2) = f(1) - 6
∵ f(1) = 15
∴ f(2) = 15 - 6 = 9
∴ The second term is 9
∴ The second term of the sequence is 8 False
∵ n = 3
∴ f(3) = f(2) - 6
∵ f(2) = 9
∴ f(3) = 9 - 6 = 3
∴ The third term is 3
∴ The third term of the sequence is 3 True
∵ n = 4
∴ f(4) = f(3) - 6
∵ f(3) = 3
∴ f(4) = 3 - 6 = -3
∴ The fourth term is -3
∴ The fourth term of the sequence is -3 True
Answer:

Step-by-step explanation:
Given: a graph
To find: the average rate of change of the amount of the element over the 10-minute experiment
Solution:
A rate of change of one quantity with respect to another quantity is known as rate of change. If y is the dependent variable and x is the independent variable then average rate of change = change in y /change in x.
From the graph,
change in x (time) =
minutes
change in y ( amount of the element) =
g
So, average rate of change = 
love Scenes That Went Too Far