Complete Question
A 95 kg clock initially at rest on a horizontal floor requires a 650 N horizontal force to set it in motion. After the clock is in motion, a horizontal force of 560 N keeps it moving with a constant velocity. Find the coefficient of static friction and the coefficient of kinetic friction.
Answer:
The value for static friction is 
The value for static friction is 
Explanation:
From the question we are told that
The mass of the clock is 
The first horizontal force is 
The second horizontal force is 
Generally the static frictional force is equal to the first horizontal force
So

=> 
=> 
Generally the kinetic frictional force is equal to the second horizontal force
So



Weight = (mass) x (gravity)
If you plan to sell these things on Earth, then the acceleration of gravity in the neighborhood of your drive-throughs will be 9.81 m/s².
Weight of each sandwich = (0.1 kg) x (9.81 m/s²).
Weight of each sandwich = 0.981 Newton.
This is only 1.9% less than 1 even Newton.
You should start by setting up one restaurant in New York, one in Chicago, one in LA, and maybe one in Miami or Tulsa. Sell it with a different name in each place, and see which name sells best.
You might want to try calling it
-- Isaac's burger
-- Gravity grub
-- Prism Patty
-- Mass 'o Meat
-- Unit-wich
and see if anything catches on.
I think I'd simply call it a "Newton Unit".
The ability to reproduce is essential for a species, but not for an individual. There are some people that can't reproduce, but they're still alive!
Answer: D. wealthy
Explanation: on the e2020 test its right
The Coulomb force between two or more charged bodies is the force between them due to Coulomb's law. If the particles are both positively or negatively charged, the force is repulsive; if they are of opposite charge, it is attractive. ... Like the gravitational force, the Coulomb force is an inverse square law.