Answer:
See the answers below
Explanation:
To solve this problem we must use the following equation of kinematics.

where:
Vf = final velocity [m/s]
Vo = initial velocity [m/s]
a = acceleration [m/s²]
t = time [s]
<u>First case</u>
Vf = 6 [m/s]
Vo = 2 [m/s]
t = 2 [s]
![6=2+a*2\\4=2*a\\a=2[m/s^{2} ]](https://tex.z-dn.net/?f=6%3D2%2Ba%2A2%5C%5C4%3D2%2Aa%5C%5Ca%3D2%5Bm%2Fs%5E%7B2%7D%20%5D)
<u>Second case</u>
Vf = 25 [m/s]
Vo = 5 [m/s]
a = 2 [m/s²]
![25=5+2*t\\t = 10 [s]](https://tex.z-dn.net/?f=25%3D5%2B2%2At%5C%5Ct%20%3D%2010%20%5Bs%5D)
<u>Third case</u>
Vo =4 [m/s]
a = 10 [m/s²]
t = 2 [s]
![v_{f}=4+10*2\\v_{f}=24 [m/s]](https://tex.z-dn.net/?f=v_%7Bf%7D%3D4%2B10%2A2%5C%5Cv_%7Bf%7D%3D24%20%5Bm%2Fs%5D)
<u>Fourth Case</u>
Vf = final velocity [m/s]
Vo = initial velocity [m/s]
a = acceleration [m/s²]
t = time [s]
![v_{f}=5+8*10\\v_{f}=85 [m/s]](https://tex.z-dn.net/?f=v_%7Bf%7D%3D5%2B8%2A10%5C%5Cv_%7Bf%7D%3D85%20%5Bm%2Fs%5D)
<u>Fifth case</u>
Vf = final velocity [m/s]
Vo = initial velocity [m/s]
a = acceleration [m/s²]
t = time [s]

Think of the cell membrane as a net and the nutrients are the perfect fit to fall through it. Where the waste is not the right size and will not fit through the holes of the net.
C because of galvination is sized
Power = (voltage) x (current)
If the camcorder is USING 14 watts of electrical power right now, then . . .
14 watts = (2 volts) x (current)
Divide each side by (2 volts):
Current = (14 watts) / (2 volts)
Current = (14 V-A) / (2 V)
<em>Current = 7 Amperes</em>
The law of conservation states that the total amount of energy of an isolated system remains constant; it is said to be conserved over time