In his observation, he notices that the hydrogen atom only emitted light of a fixed wavelength. He was able to discover that the electrons only orbit the nucleus of the atom at discrete orbits. When the electron ‘jumps’ from a higher to lower level orbit, it emits a wavelength. These wavelengths are unique to atoms of an element and can be used to identify them hence he led the way to the establishment of the light spectrum.
1 atm = 760mmHg
754.3 mmHg / 760 mmHg * 1atm = 0.99 atm
760 mmHg = 101.3 KPa
754.3 mmHg/ 760mmHg *101.3 KPa = 100.54 KPa
Hope this helps!
Answer:
the cells in your body
Explanation:
Most people that i have asked this similar question to, have said the sun. It's not the sun because the sun disappears at night. Your body produces heat because your cells are burning up energy.
Answer: I'll leave the answer rounded to three sig figs.
mark me brainlist
So, you can say that in a hydrogen atom, an electron located on
n
i
=
2
that absorbs a photon of energy
4.85
⋅
10
−
19
J
can make the jump to
n
f
=
6
.
Explanation:
The question wants you to determine the energy that the incoming photon must have in order to allow the electron that absorbs it to jump from
n
i
=
2
to
n
f
=
6
.
A good starting point here will be to calculate the energy of the photon emitted when the electron falls from
n
i
=
6
to
n
f
=
2
by using the Rydberg equation.