Answer:
10.7 g of KOH
Explanation:
First of all, we determine the reaction:
2K (s) + 2H₂O(l) → H₂(g) + 2KOH(aq)
We convert the mass of K, to moles → 7.5 g . mol/39.1 g = 0.192 moles
Ratio is 2:2, so the moles I have of K must produce the same moles of KOH. In this case, the produces moles of KOH are 0.192 moles.
We convert the moles to mass, to finish the answer:
0.192 mol . 56.1g /1mol = 10.7 g of KOH
Given an equilibrium constant value of 7.2 x 10-4 it is false to say that the reaction proceeds essentially to completion.
<h3>What is the equilibrium constant?</h3>
In a reaction, we can judge using the value of the equilibrium constant weather or not the reaction moves on to completion. If the reaction moves up to completion, it the follows that the value of the equilibrium constant ought to be large.
On the other hand, when we have a case that the equilibrium constant is small and is not so large, then the reaction does not proceed essentially to completion.
Given an equilibrium constant value of 7.2 x 10-4 it is false to say that the reaction proceeds essentially to completion.
Learn more about equilibrium constant:brainly.com/question/10038290
#SPJ1
Answer: Microscope
Explanation: This is a kid answering :)
Answer:
V = 12.93 L
Explanation:
Given data:
Number of moles = 0.785 mol
Pressure of balloon = 1.5 atm
Temperature = 301 K
Volume of balloon = ?
Solution:
The given problem will be solve by using general gas equation,
PV = nRT
P= Pressure
V = volume
n = number of moles
R = general gas constant = 0.0821 atm.L/ mol.K
T = temperature in kelvin
Now we will put the values.
V = nRT/P
V = 0.785 mol × 0.0821 atm.L/ mol.K × 301 K / 1.5 atm
V = 19.4 L /1.5
V = 12.93 L