Answer: homogeneous
Explanation: The taste of soda water is constant till the end. The carbon dioxide is dissolved homogeneously in soda water.
Answer:
P = 13.5 atm
Explanation:
Given that
No. of moles, n = 20 moles
Volume of nitrogen gas = 36.2 L
Temperature = 25°C = 298 K
We need to find the pressure of the gas. Using the ideal gas equation
PV = nRT
Where
R is gas constant, 
So,

so, the pressure of the gas is equal to 13.5 atm.
Answer: A pressure of 0.681 atm would be exerted by 0.023 grams of oxygen
if it occupies 31.6 mL at
.
Explanation:
Given : Mass of oxygen = 0.023 g
Volume = 31.6 mL
Convert mL into L as follows.

Temperature = 
As molar mass of
is 32 g/mol. Hence, the number of moles of
are calculated as follows.

Using the ideal gas equation calculate the pressure exerted by given gas as follows.
PV = nRT
where,
P = pressure
V = volume
n = number of moles
R = gas constant = 0.0821 L atm/mol K
T = temperature
Substitute the value into above formula as follows.

Thus, we can conclude that a pressure of 0.681 atm would be exerted by 0.023 grams of oxygen
if it occupies 31.6 mL at
.
B. Rotten orange is the correct answer. Hope this helps!
1. A radical is a reactive intermediate with a single ____________ electron, formed by ____________ of a covalent bond.
1. A: Unpaired, and homolysis
2. Allylic radicals are stabilized by ____________ , making them ____________ stable than tertiary radicals.
2. A: Resonance, and more
3. A compound that contains an especially weak bond that serves as a source of radicals is called a radical ____________ .
3. A: Initiator
4. Treatment of cyclohexene with N-bromosuccinimide in the presence of light leads to ____________ by ____________ intermediates.
4. A: Allylic substitution by radical