Terrorist attacks on the United States is the answer.
On September 11, 2001 that was the day New York got attacked by terrorists. The Twin Towers were the ones that got affected, 2,996 people (maybe more) died during that attacked. The terrorists were one of the 2,996 people that died (19 of them died). more than 6,000 were injured that day.
#NeverForget
Hope this helped
Have a great day<span />
To solve this problem we will use the concepts related to gravitational acceleration and centripetal acceleration. The equality between these two forces that maintains the balance will allow to determine how the rigid body is consistent with a spherically symmetric mass distribution of constant density. Let's start with the gravitational acceleration of the Star, which is
Here
Mass inside the orbit in terms of Volume and Density is
Where,
V = Volume
Density
Now considering the volume of the star as a Sphere we have
Replacing at the previous equation we have,
Now replacing the mass at the gravitational acceleration formula we have that
For a rotating star, the centripetal acceleration is caused by this gravitational acceleration. So centripetal acceleration of the star is
At the same time the general expression for the centripetal acceleration is
Where is the orbital velocity
Using this expression in the left hand side of the equation we have that
Considering the constant values we have that
As the orbital velocity is proportional to the orbital radius, it shows the rigid body rotation of stars near the galactic center.
So the rigid-body rotation near the galactic center is consistent with a spherically symmetric mass distribution of constant density
I'm assuming the question is time it will take for ball to reach ground, if it is then set equation to zero then use the quadratic formula, the possible t value is your answer then
Answer:
V is greater
Explanation:
because v intial at that time V final is the that speed which it is going at that time
a. 0.5 T
- The amplitude A of a simple harmonic motion is the maximum displacement of the system with respect to the equilibrium position
- The period T is the time the system takes to complete one oscillation
During a full time period T, the mass on the spring oscillates back and forth, returning to its original position. This means that the total distance covered by the mass during a period T is 4 times the amplitude (4A), because the amplitude is just half the distance between the maximum and the minimum position, and during a time period the mass goes from the maximum to the minimum, and then back to the maximum.
So, the time t that the mass takes to move through a distance of 2 A can be found by using the proportion
and solving for t we find
b. 1.25T
Now we want to know the time t that the mass takes to move through a total distance of 5 A. SInce we know that
- the mass takes a time of 1 T to cover a distance of 4A
we can set the following proportion:
And by solving for t, we find