Depends. Are you talking about a mathematical 4th dimension (in which there is infinite dimensions) or some sort of etheral dimension (in which there is no scientific evidence for)
If you mean the first then yes. But it depends how these beings exist. From our understanding we only can theorize shapes in 4-d and if we assume that there is only one universe these "beings" arleady exist and thus any message in 3-d would be sent to them like a shadow ("flat").
If they exist in a alternate "plane" then you would need some method to transverse this plan and if u did, then we would easily be able to communicate, but we would at first sound like a wild animal. They either would ignore us, not understand or perceive us, or they would attempt to send back a signal (essential they are ET's)
IF you mean the second then thats some mystic stuff and its pretty creepy (although a fun read for me :P)
<span />
Answer:
Power = 251.9 Watts
Explanation:
Power = Work Done / Time taken
Power = 3441 / 13.66
Power = 251.9 Joule / Second
Power = 251.9 Watts
First of all, there are not <u>just</u> two applications that are solely applicable to the electron beam welding process. There are MANY.
Please visit out website at the URL below and you can click the "View Application" button under each listed Industry segment to view case studies of commonly EB welded applications.
https://www.ptreb.com/electron-beam-welding-applications
And for more general information on our welding process, we have an informational section you can peruse as well:
https://www.ptreb.com/electron-beam-welding-information
Good luck with your assignment- we are glad to hear they are teaching about EBW in high school!!!
A- Straight Down
Remember wherever the object is, whether it is straight or inclined, gravitational pull will always act downwards.
Answer:
The current in the circuit at a time interval of τ seconds after the switch has been closed is 0.123 A
Explanation:
The time constant for an R and C in series circuit is given by τ = RC.
R = 3000 ohms, C = 0.5 × 10⁻⁶ F = 5.0 × 10⁻⁷ F
τ = 3000 × 5 × 10⁻⁷ = 0.015 s
The voltage across a capacitor as it charges is given be
V(t) = Vs (1 - e⁻ᵏᵗ)
where k = 1/τ
At the point when t = τ, the expassion becomes
V(t = τ) = 1000 (1 - e⁻¹) = 0.632 × 1000 = 632 V
Current flows as a result of potential difference,.
Current in the circuit at this time t = τ is given by
I = (Vs - Vc)/R
Vs = source voltage = 1000 V
Vc = Voltage across the capacitor = 632 V
R = 3000 ohms
I = (1000 - 632)/3000 = 0.123 A