1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Radda [10]
3 years ago
5

What is the relation of the sign of the charge on the charging body to the sign of the charge on the charged body when the charg

ing is by contact
Physics
1 answer:
galben [10]3 years ago
7 0

Charging by conduction involves the contact of a charged object to a neutral object. .

<u>Explanation:</u>

  • Suppose that a charged aluminum plate is touched to a neutral metal sphere, the neutral metal sphere becomes negatively charged because of the results of being contacted by the charged aluminum plate.
  • A charged metal sphere is touched to the highest plate of a neutral needle measuring instrument, the neutral measuring instrument becomes charged because of the results of being contacted by the metal sphere.
  • For example, a student standing on an insulating platform touches a negatively charged Van de Graaff generator, the neutrally charged student becomes charged. This is due to the contact made with the Van De Graaff generator which is negatively charged.

 

You might be interested in
A cannon ball launched horizontally with a speed of 20m/s and a baseball dropped off a cliff and it accelerates at a rate of 10m
miskamm [114]
If they both start from the same height, then they both hit the ground at the
same time.  It makes no difference if their horizontal speeds aren't equal.
The cannon ball still accelerates downward at the same rate as the baseball.
8 0
3 years ago
The compressed-air tank ab has a 250-mm outside diameter and an 8-mm wall thickness. it is fitted with a collar by which a 40-kn
valentinak56 [21]
<span>Assume: neglect of the collar dimensions. Ď_h=(P*r)/t=(5*125)/8=78.125 MPa ,Ď_a=Ď_h/2=39 MPa Ď„=(S*Q)/(I*b)=(40*〖10〗^3*Ď€(〖0.125〗^2-〖0.117〗^2 )*121*〖10〗^(-3))/(Ď€/2 (〖0.125〗^4-〖0.117〗^4 )*8*〖10〗^(-3) )=41.277 MPa @ Point K: Ď_z=(+M*c)/I=(40*0.6*121*〖10〗^(-3))/(8.914*〖10〗^(-5) )=32.6 MPa Using Mohr Circle: Ď_max=(Ď_h+Ď_a)/2+âš(Ď„^2+((Ď_h-Ď_a)/2)^2 ) Ď_max=104.2 MPa, Ď„_max=45.62 MPa</span>
3 0
3 years ago
The distance between two stations is 180 km. A train takes 2 hours to cover this distance. The speed of the train in m/sec is...
Mamont248 [21]

Answer:

Av = 25 [m/s]

Explanation:

To solve this problem we must use the definition of speed, which is defined as the relationship between distance over time. for this case we have.

Av=\frac{distance}{time}

where:

Av = speed [km/h] or [m/s]

distance = 180 [km]

time = 2 [hr]

Therefore the speed is equal to:

Av = \frac{180}{2} \\Av = 90 [km/h]

Now we must convert from kilometers per hour to meters per second

90[\frac{km}{h}]*1000[\frac{m}{1km}]*1[\frac{h}{3600s} ]= 25 [m/s]

4 0
3 years ago
Using a screwdriver to pry off the lid to a paint can is an example of a second class lever.
Serggg [28]
Is this a question? Please provide more information.
8 0
3 years ago
Read 2 more answers
The L-ft ladder has a uniform weight of W lb and rests against the smooth wall at B. θ = 60. If the coefficient of static fricti
Colt1911 [192]

This question is incomplete, the complete question;

The L-ft ladder has a uniform weight of W lb and rests against the smooth wall at B. θ = 60. If the coefficient of static friction at A is μ = 0.4.

Determine the magnitude of force at point A and determine if the ladder will slip. given the following; L = 10 FT, W = 76 lb

Answer:

- the magnitude of force at point A is 79.1033 lb

- since FA < FA_max; Ladder WILL NOT slip

Explanation:

Given that;

∑'MA = 0

⇒ NB [Lsin∅] - W[L/2.cos∅] = 0

NB = W / 2tan∅ -------let this be equation 1

∑Fx = 0

⇒ FA - NB = 0

FA = NB

therefore from equation 1

FA = NB = W / 2tan∅

we substitute in our values

FA = NB = 76 / 2tan(60°) = 21.9393 lb

Now ∑Fy = 0

NA - W = 0

NA = W = 76 lb

Net force at A will be

FA' = √( NA² + FA²)

= √( (W)² + (W / 2tan∅)²)

we substitute in our values

FA' = √( (76)² + (21.9393)²)

= √( 5776 + 481.3328)

= √ 6257.3328

FA' = 79.1033 lb

Therefore the magnitude of force at point A is 79.1033 lb

Now maximum possible frictional force at A

FA_max = μ × NA

so, FA_max = 0.4 × 76

FA_max = 30.4 lb

So by comparing, we can easily see that the actual friction force required for keeping the the ladder stationary i.e (FA) is less than the maximum possible friction available at point A.

Therefore since FA < FA_max; Ladder WILL NOT slip

5 0
3 years ago
Other questions:
  • An object with a mass of 5kg accelerates at 2m/s2. How much force in Newtons(N) is needed to cause this to happen?
    5·1 answer
  • Match each wave characteristic to its description.
    13·2 answers
  • Our family car travels 40 miles in 2 hours. What is our average speed in mph?
    7·1 answer
  • Why does erosion always lead to deposition?
    15·1 answer
  • Who knows the egg drop challenge
    13·1 answer
  • A 1.0 kg cart moving at 2.0 m/s collides with a stationary 2.0 kg cart.how fast do the two move together if they become stuck to
    15·1 answer
  • How does a bicycle dynamo work?<br>​
    6·2 answers
  • A toy dart gun has a spring with k= 128 N/m. How much force does it take to pull the spring back 0.0500 m? (Unit = N)​
    13·2 answers
  • Just a question anybody playing minècraft here?
    7·2 answers
  • 3 a A motorcyclist starts from rest and reaches
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!