There are some missing information in the question.
However, since you are talking about magnetic force, I think you refer to the Lorentz force. When a particle of charge q and velocity v is immersed in a magnetic field of intensity B, the force acting on the particle is:

where

is the angle between the magnetic field and the direction of the particle.
Therefore, if force F is doubled, then also the velocity v must be double of its initial value:
Answer:

Explanation:
The ratio of pressure 2 to 1 us 5.48/1= 5.48 rounded off as 5.5.
Referring to table A.2 of modern compressible flow then 
Also
and making
the subject of the formula then
Making reference to
diagram then

mass of the ball m = 0.63 kg
initial height h = 1.8 m
final height h ' = 3.03 m
initial speed v = 7.09 m / s
final speed v ' = 4.21 m / s
Let the work done on the ball by air resistance W = ?
we know from law of conservation of energy ,
total energy at height h + work done by air = total energy at height h '
mgh + ( 1/ 2) mv^ 2 + W = mgh ' + ( 1/ 2) mv'^ 2
0.630*9.8*1.8 + 0.63*7.09^2 + W = mgh ' + ( 1/ 2) mv'^ 2
From there you can find W
if there is negative sign indicates it work opposite direction to motion
The answer is focal point.
The focal length is the distance from the lens (or mirror) to the focal point. The focal point is <span>the point at which rays of light converge.</span>
DO YOU HAVE THE ENGLISH TRANSLATION?