To solve this problem we will apply the linear motion kinematic equations. From the definition of the final velocity, as the sum between the initial velocity and the product between the acceleration (gravity) by time, we will find the final velocity. From the second law of kinematics, we will find the vertical position traveled.

Here,
v = Final velocity
= Initial velocity
g = Acceleration due to gravity
t = Time
At t = 4s, v = -30m/s (Downward)
Therefore the initial velocity will be


Now the position can be calculated as,

When it has the ground, y=0 and the time is t=4s,


Therefore the cliff was initially to 41.6m from the ground
The answer is the 4th option because they don't use oxygen, that's what they produce
Well first of all, you must realize that it depends on how the jumpers are distributed on the earth's surface. If,say, one billion of them are in the eastern hemisphere and the other billion are in the western one, then the sum of all of their momenta could easily be zero, and have no effect at all on the planet. I'm pretty sure what you must have in mind is to consider the Earth to be a block, with a flat upper surface, and all the people jump in the same direction.
average mass per person = 60 kg.
jump velocity = 7 m/s straight up and away from the block, all in the same direction
one person's worth of momentum = (m) (v) = 420 kg.m/s
sum of two billion of them = 8.4 x 10¹¹ kg-m/s all in the same direction
Earth's "recoil" momentum = 8.4 x 10¹¹ in the opposite direction = (m) (v)
Divide each side by 'm' : v = (momentum) / (mass) =
The Earth's "recoil" velocity is (8.4 x 10¹¹) / (5.98 x 10²⁴) =
1.405 x 10⁻¹³ m/s =
<em> 0.00000000014 millimeter per second
</em>I have no intuitive feeling for this kind of thing, so can't judge whether
the answer is reasonable. But my math and physics felt OK on the
way to the solution, so that's my answer and I'm sticking to it.
Which of the following pairings are more likely to be held together with the strong nuclear force
Explanation:
1.What does a strong nuclear force do in an atom? It repels electrons from other electrons. It repels protons from other protons. It attracts protons and neutrons.
2.The chain reaction requires both the release of neutrons from fissile isotopes undergoing nuclear fission and the subsequent absorption of some of these neutrons in fissile isotopes.
3.The strong nuclear force holds most ordinary matter together because it confines quarks into hadron particles such as the proton and neutron. In addition, the strong force binds these neutrons and protons to create atomic nuclei.