A force that results from charged particles is called<u> </u><u>"electrostatic force".</u>
Hope this helps!
-Thanks!
-Charlie
Answer;
The above statement is true.
-A photograph is taken by letting light fall on a light-sensitive medium, which then records the image onto that medium.
Explanation;
-A photograph is created when light is allowed to fall on a light-sensitive medium. The pattern of light creates an image that is recorded by the photographic device. How light or dark a photograph is depends on how much light was allowed to fall on the light-sensitive medium.
-A camera is a light-tight box that contains a light-sensitive material or device and a way of letting in a desired amount of light at particular times to create an image on the light-sensitive material.
Answer:
91.87 m/s
Explanation:
<u>Given:</u>
- x = initial distance of the electron from the proton = 6 cm = 0.06 m
- y = initial distance of the electron from the proton = 3 cm = 0.03 m
- u = initial velocity of the electron = 0 m/s
<u>Assume:</u>
- m = mass of an electron =

- v = final velocity of the electron
- e = magnitude of charge on an electron =

- p = magnitude of charge on a proton =

We know that only only electric field due to proton causes to move from a distance of 6 cm from proton to 3 cm distance from it. This means the electric force force does work on the electron to move it from one initial position to the final position which is equal to the change in potential energy of the electron due to proton.
Now, according to the work-energy theorem, the total work done by the electric force on the electron due to proton is equal to the kinetic energy change in it.


Hence, when the electron is at a distance of c cm from the proton, it moves with a velocity of 91.87 m/s.
Answer:
the acceleration of harry is equal to 66.126 m/s²
Explanation:
given,
harry is 35 m behind Draco
speed of Draco = 40 m/s
original speed of harry = 50 m/s
acceleration = ?
time taken by the Draco
t =
t = 1.875 s
distance covered by Harry
d = 35 + 175 = 210 m
to calculate the acceleration of harry


a × 3.516 × 0.5 = 116.25
a = 66.126 m/s²
hence, the acceleration of harry is equal to 66.126 m/s²
Answer:
B. Maximum velocity of ejected electrons.
Explanation:
The ejection of electrons form a metal surface when the metal surface is exposed to a monochromatic electromagnetic wave of sufficiently short wavelength or higher frequency (or equivalently, above a threshold frequency), which leads to the enough energy of the wave to incident and get absorbed to the exposed surface emits electrons. This phenomenon is known as the photoelectric effect or photo-emission.
The minimum amount of energy required by a metal surface to eject an electron from its surface is called work function of metal surface.
The electrons thus emitted are called photo-electrons.
The current produced as a result is called photo electricity.
Energy of photon is given by:

where:
h = Planck's constant
frequency of the incident radiation.