Answer:
FB = 0.187 N
Explanation:
To find the magnetic force FB in the wire you use the following formula:

the angle between B and L is given by:

Due to B depends on "y" you take into account the contribution of each element dy of the wire to the magnitude of the magnetic force. Thus, you have to integrate the following expression:
![|\vec{F_B}|=Isin\theta\int_0^{0.25}B(y)dy=Isin\theta\int_0^{0.25}(0.5y)dy\\\\|\vec{F_B}|=(2.0*10^{-3}A)(sin36.86\°)(0.5T)[\frac{0.25^2}{2}m]=0.187\ N](https://tex.z-dn.net/?f=%7C%5Cvec%7BF_B%7D%7C%3DIsin%5Ctheta%5Cint_0%5E%7B0.25%7DB%28y%29dy%3DIsin%5Ctheta%5Cint_0%5E%7B0.25%7D%280.5y%29dy%5C%5C%5C%5C%7C%5Cvec%7BF_B%7D%7C%3D%282.0%2A10%5E%7B-3%7DA%29%28sin36.86%5C%C2%B0%29%280.5T%29%5B%5Cfrac%7B0.25%5E2%7D%7B2%7Dm%5D%3D0.187%5C%20N)
hence, the magnitude of the magnetic force is 0.187N
<h2>
Answer: 1.252</h2>
Explanation:
We are given this equation and we need to find the value of
:
(1)
Firstly, we have to clear
:
(2)
Applying<u> Natural Logarithm</u> on both sides of the equation (2):
(3)
(4)
According to the Natural Logarithm rules
, so (4) can be written as:
(5)
Finally:
Answer:
Explanation:
Momentum conservation

Kinetic energy conservation

Solve the system
Run electrity through or is postive to the circuit
Answer:
1.48kg
Explanation:
Here,
potential energy (P.E) = 29j
height (h) = 2m
acceleration due to gravity(g) =

mass(m) = ?
we know,
P.E = mgh
or, 29 = m×9.8×2
or, 29/19.6 = m
or,m = 1.48kg