Answer:
ummmmmmmmmmmm ask your teacher or perant for help
Explanation:
so umm ask an adult or teen figure and maybe you will get it write not sure do
AnswerAmontons's law. If the temperature is increased, the average speed and kinetic energy of the gas molecules increase. ... If the gas volume is decreased, the container wall area decreases and the molecule-wall collision frequency increases, both of which increase the pressure exerted by the gas (Figure 1).:
Explanation:
Answer:
on increasing pressure, temperature will also increase.
Explanation:
Considering the ideal gas equation as:
where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 0.0821 L.atm/K.mol
Thus, at constant volume and number of moles, Pressure of the gas is directly proportional to the temperature of the gas.
P ∝ T
Also,
Also, using Gay-Lussac's law,

Thus, on increasing pressure, temperature will also increase.
Answer:
at r < R;
at 2R > r > R;
at r >= 2R
Explanation:
Since we have a spherically symmetric system of charged bodies, the best approach is to use Guass' Theorem which is given by,
(integral over a closed surface)
where,
= Electric field
= charged enclosed within the closed surface
= permittivity of free space
Now, looking at the system we can say that a sphere(concentric with the conducting and non-conducting spheres) would be the best choice of a Gaussian surface. Let the radius of the sphere be r .
at r < R,
= 0 and hence
= 0 (since the sphere is conducting, all the charges get repelled towards the surface)
at 2R > r > R,
= Q,
therefore,
(Since the system is spherically symmetric, E is constant at any given r and so we have taken it out of the integral. Also, the surface integral of a sphere gives us the area of a sphere which is equal to
)
or, 
at r >= 2R
= 2Q
Hence, by similar calculations, we get,
