Answer:
At 81. 52 Deg C its resistance will be 0.31 Ω.
Explanation:
The resistance of wire =
Where
=Resistance of wire at Temperature T
= Resistivity at temperature T ![=\rho_0 \ [1 \ + \alpha\ (T-T_0\ )]](https://tex.z-dn.net/?f=%3D%5Crho_0%20%5C%20%5B1%20%5C%20%2B%20%5Calpha%5C%20%28T-T_0%5C%20%29%5D)
Where 
l=Length of the wire
& A = Area of cross section of wire
For long and thin wire the resistance & resistivity relation will be as follows

![\frac{0.25}{0.31}=\frac{1}{[1+\alpha(T-20)]}](https://tex.z-dn.net/?f=%5Cfrac%7B0.25%7D%7B0.31%7D%3D%5Cfrac%7B1%7D%7B%5B1%2B%5Calpha%28T-20%29%5D%7D)



T = 81.52 Deg C
The answer is a. generator!
Answer:
The first harmonic is: 250Hz, second harmonic 500Hz, third harmonic 750Hz.
Explanation:
Use the frequency f, speed v, and wavelentgh L relationship:

We are given the speed v=400 m/s. The base wavelength on a string of length 80cm is twice the length of the string (a "half wave" along the full length of the string), so:

The fundamental frequency (first harmonic) is 250 Hz
The second harmonic is produced by one full wave across the string (adding one node in the middle), so L=80cm in this case, therefore the second harmonic frequency is: f2 = 2*250=500Hz
the third harmonic add another node (and a half wave) to the pattern and the wavelength will be 2/3 of 80cm, so f3=3*250Hz = 750Hz
Answer:
g(h) = g ( 1 - 2(h/R) )
<em>*At first order on h/R*</em>
Explanation:
Hi!
We can derive this expression for distances h small compared to the earth's radius R.
In order to do this, we must expand the newton's law of universal gravitation around r=R
Remember that this law is:

In the present case m1 will be the mass of the earth.
Additionally, if we remember Newton's second law for the mass m2 (with m2 constant):

Therefore, we can see that

With a the acceleration due to the earth's mass.
Now, the taylor series is going to be (at first order in h/R):

a(R) is actually the constant acceleration at sea level
and

Therefore:

Consider that the error in this expresion is quadratic in (h/R), and to consider quadratic correctiosn you must expand the taylor series to the next power:
