1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NikAS [45]
3 years ago
13

Two laptop computers each have a mass of 2 kg. If they are 0.5 m apart on a desk, what is the gravitational force between them?

G = 6.67 × 10-11 N⋅(m/kg)2
Physics
1 answer:
Rudik [331]3 years ago
4 0

Answer:

F = 1.067 \times 10^{-9} N

Explanation:

As we know that the gravitational force between two masses is given as

F = \frac{Gm_1m_2}{r^2}

here we know that

m_1 = m_2 = 2 kg

also we know that

r = 0.5 m

G = 6.67 \times 10^{-11} Nm^2/kg^2

so the force between two masses is given as

F = \frac{(6.67 \times 10^{-11})(2)(2)}{0.5^2}

F = 1.067 \times 10^{-9} N

You might be interested in
Which of the following are known to exist on the moon? select all that apply.
denis-greek [22]
B. ice and d basalt............
3 0
3 years ago
Read 2 more answers
Let v1, , vk be vectors, and suppose that a point mass of m1, , mk is located at the tip of each vector. The center of mass for
g100num [7]

Answer:

Explanation:

Center of mass is give as

Xcm = (Σmi•xi) / M

Where i= 1,2,3,4.....

M = m1+m2+m3 +....

x is the position of the mass (x, y)

Now,

Given that,

u1 = (−1, 0, 2) (mass 3 kg),

m1 = 3kg and it position x1 = (-1,0,2)

u2 = (2, 1, −3) (mass 1 kg),

m2 = 1kg and it position x2 = (2,1,-3)

u3 = (0, 4, 3) (mass 2 kg),

m3 = 2kg and it position x3 = (0,4,3)

u4 = (5, 2, 0) (mass 5 kg)

m4 = 5kg and it position x4 = (5,2,0)

Now, applying center of mass formula

Xcm = (Σmi•xi) / M

Xcm = (m1•x1+m2•x2+m3•x3+m4•x4) / (m1+m2+m3+m4)

Xcm = [3(-1, 0, 2) +1(2, 1, -3)+2(0, 4, 3)+ 5(5, 2, 0)]/(3 + 1 + 2 + 5)

Xcm = [(-3, 0, 6)+(2, 1, -3)+(0, 8, 6)+(25, 10, 0)] / 11

Xcm = (-3+2+0+25, 0+1+8+10, 6-3+6+0) / 11

Xcm = (24, 19, 9) / 11

Xcm = (2.2, 1.7, 0.8) m

This is the required center of mass

6 0
3 years ago
The weight of a rock is 8.5 pounds. Does this statement include
Kaylis [27]

Answer:

quantitative

Explanation:

4 0
3 years ago
A drowsy cat spots a flowerpot that sails first up and then down past an open window. the pot was in view for a total of 0.49 s,
Alika [10]

For this case, let's assume that the pot spends exactly half of its time going up, and half going down, i.e. it is visible upward for 0.245 s and downward for 0.245 s. Let us take the bottom of the window to be zero on a vertical axis pointing upward. All calculations will be made in reference to this coordinate system. <span>

An initial condition has been supplied by the problem: 

s=1.80m when t=0.245s 

<span>This means that it takes the pot 0.245 seconds to travel upward 1.8m. Knowing that the gravitational acceleration acts downward constantly at 9.81m/s^2, and based on this information we can use the formula:

s=(v)(t)+(1/2)(a)(t^2) 

to solve for v, the initial velocity of the pot as it enters the cat's view through the window. Substituting and solving (note that gravitational acceleration is negative since this is opposite our coordinate orientation): 

(1.8m)=(v)(0.245s)+(1/2)(-9.81m/s^2)(0.245s)^2 

v=8.549m/s 

<span>Now we know the initial velocity of the pot right when it enters the view of the window. We know that at the apex of its flight, the pot's velocity will be v=0, and using this piece of information we can use the kinematic equation:

(v final)=(v initial)+(a)(t) 

to solve for the time it will take for the pot to reach the apex of its flight. Because (v final)=0, this equation will look like 

0=(v)+(a)(t) 

Substituting and solving for t: 

0=(8.549m/s)+(-9.81m/s^2)(t) 

t=0.8714s 

<span>Using this information and the kinematic equation we can find the total height of the pot’s flight:

s=(v)(t)+(1/2)(a)(t^2) </span></span></span></span>

s=8.549m/s (0.8714s)-0.5(9.81m/s^2)(0.8714s)^2

s=3.725m<span>

This distance is measured from the bottom of the window, and so we will need to subtract 1.80m from it to find the distance from the top of the window: 

3.725m – 1.8m=1.925m</span>

 

Answer:

<span>1.925m</span>

3 0
3 years ago
What is the average speed of a car that travels 40 mph for 1 hour and 60 mph in another hour?
svetoff [14.1K]

Average speed = (total distance covered) / (time to cover the distance)

-- Traveling at 40 mph for 1 hour, the distance covered is 40 miles.

-- Traveling at 60 mph for 1 hour, the distance covered is 60 miles.

-- Total distance covered = (40 miles) + (60 miles) = 100 miles

-- Total time = (1 hour) + (1 hour)  =  2 hours

-- Average speed = (100 miles) / (2 hours)

<em>Average speed = 50 miles per hour</em>

6 0
3 years ago
Other questions:
  • To calculate the velocity of an object the of the position vs time graph should be calculated
    12·2 answers
  • How is a controlled variable different from a responding variable?
    7·1 answer
  • How do sound waves move in air
    14·2 answers
  • If the air pressure is doubled, the speed of sound
    11·1 answer
  • Car A (mass 1100 kg) is stopped at a traffic light when it is rear­ended by car B(mass 1400 kg). Both cars then slide with locke
    8·1 answer
  • If a typical smelt weighs 225 g, what is the total mass of pcbs in a smelt in the great lakes?
    5·1 answer
  • When viewed in yellow light, an object that reflects all the colors of light will appear_____.
    15·1 answer
  • Bob is threatening Tom’s life with a giant laser with wavelength (650 nm), a distance (D = 10 m) from the wall James is shackled
    8·1 answer
  • If y gets smaller as x gets bigger, x and y have a?
    12·2 answers
  • A car increases its speed from 11.1 meters per second to 24.2 meters per second in 5.0 seconds. What is the average acceleration
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!