Explanation:
To answer this question, we'll need to use the Ideal Gas Law:
p
V
=
n
R
T
,
where
p
is pressure,
V
is volume,
n
is the number of moles
R
is the gas constant, and
T
is temperature in Kelvin.
The question already gives us the values for
p
and
T
, because helium is at STP. This means that temperature is
273.15 K
and pressure is
1 atm
.
We also already know the gas constant. In our case, we'll use the value of
0.08206 L atm/K mol
since these units fit the units of our given values the best.
We can find the value for
n
by dividing the mass of helium gas by its molar mass:
n
=
number of moles
=
mass of sample
molar mass
=
6.00 g
4.00 g/mol
=
1.50 mol
Now, we can just plug all of these values in and solve for
V
:
p
V
=
n
R
T
V
=
n
R
T
p
=
1.50 mol
×
0.08206 L atm/K mol
×
273.15 K
1 atm
= 33.6 L
this is not the answer but it will help you
do by the formula it is on the answer
To answer the questions,
(1) Activation energy is the amount of energy that is needed for the reaction to proceed, converting the reactant to products. The answer is letter B.
(2) The rate of chemical reaction normally increases as the reactant concentration is increased. The answer is letter C.
Answer: Option (A) is the correct answer.
Explanation:
Elements present in group 1 are known as alkali metals. Whereas elements present in group 2 are called alkaline earth metals and elements from group 11 to 12 are transition metals.
As it is known that metals have the ability to lose electrons in order to attain stability and electricity is the flow of electrons from one point to another.
Therefore, metals are good conductors of heat and electricity.
Thus, we can conclude that the statement it’s between groups 1 to 12 because it is metal best explains the probable position of the substance in the periodic table.