The metal is 6 a 5.00 g piece of metal is heated to 100. Then places in a beaker containing 20.
In titration, the moles of acid equal moles of base. You were given that 22.75ml of 0.215M NaOH is used, so calculate the number of moles of that base the experiment used in total. After that because you know mol base = mol acid, whatever amount of base you use must be the total amount of acid present in the solution. You were given the volume of the acid, and you have just found the total mols of acid. Using these two information, solve for the concentration. And one more thing, even though I'm pretty sure it won't affect your answer, you should always convert things to the proper units. Since the concentration we're talking about in this problem is molarity, which has the unit mol/L, you should always have all of your numbers in these units. It just make it simpler and will not confuse you
39.25 g of water (H₂O)
Explanation:
We have the following chemical reaction:
2 H₂ + O₂ → 2 H₂O
Now we calculate the number of moles of each reactant:
number of moles = mass / molar weight
number of moles of H₂ = 14.8 / 2 = 7.4 moles
number of moles of O₂ = 34.8 / 32 = 1.09 moles
We see from the chemical reaction that 2 moles of H₂ will react with 1 mole of O₂ so 7.4 moles of H₂ will react with 3.7 moles of O₂ but we only have 1.09 moles of O₂ available. The O₂ will be the limiting reactant. Knowing this we devise the following reasoning:
if 1 moles of O₂ produces 2 moles of H₂O
then 1.09 moles of O₂ produces X moles of H₂O
X = (1.09 × 2) / 1 = 2.18 moles of H₂O
mass = number of moles × molar weight
mass of H₂O = 2.18 × 18 = 39.25 g
Learn more about:
limiting reactant
brainly.com/question/7144022
brainly.com/question/6820284
#learnwithBrainly
Answer:
The temperature is always lower.
Explanation:
The temperature is always lower at the end of the state as compared to beginning of the state. We can see in the given data, the temperature is higher at the beginning i. e. 140 degree Celsius but with the passage of time, the temperature of a state decreases constantly and the temperature at the end is lower i. e. 20 degree Celsius. So we can conclude that the temperature is always lower.