Answer:
i

ii

Explanation:
From the question we are told that
The first temperatures is 
The second temperature is 
Generally the equation for the most highly populated rotational energy level is mathematically represented as
![J_{m} = [ \frac{RT}{2B}] ^{\frac{1}{2} } - \frac{1}{2}](https://tex.z-dn.net/?f=J_%7Bm%7D%20%3D%20%5B%20%5Cfrac%7BRT%7D%7B2B%7D%5D%20%20%5E%7B%5Cfrac%7B1%7D%7B2%7D%20%7D%20-%20%5Cfrac%7B1%7D%7B2%7D)
Here R is the gas constant with value 
Also
B is given as 
Generally the energy require per mole to move 1 cm is 12 J /mole
So
will require x J/mole

=> 
So at the first temperature
![J_{m} = [ \frac{8.314 * 298 }{2* 2.928 }] ^{\frac{1}{2} } - 0.5](https://tex.z-dn.net/?f=J_%7Bm%7D%20%3D%20%5B%20%5Cfrac%7B8.314%20%2A%20298%20%20%7D%7B2%2A%20%202.928%20%7D%5D%20%20%5E%7B%5Cfrac%7B1%7D%7B2%7D%20%7D%20-%200.5%20)
=> 
So at the second temperature
![J_{m} = [ \frac{8.314 * 373 }{2* 2.928 }] ^{\frac{1}{2} } - 0.5](https://tex.z-dn.net/?f=J_%7Bm%7D%20%3D%20%5B%20%5Cfrac%7B8.314%20%2A%20373%20%20%7D%7B2%2A%20%202.928%20%7D%5D%20%20%5E%7B%5Cfrac%7B1%7D%7B2%7D%20%7D%20-%200.5%20)
=> 
<span>By using the mole ratio, we can determine that 2 moles of NH3 are made when 3 moles of hydrogen gas are present. The numbers in front of the chemicals tell us the relative amounts consumed and produced. Since there is a 3 in front of H2 and a 2 in front of NH3, this tells us that for every 3 moles of H2 gas used, 2 moles of NH3 are made.</span>