<h2>
Answer:</h2><h3>22226.026 g</h3><h2>
Explanation:</h2>
To get an approximate result, multiply the mass value by 454.
<em>hope</em><em> </em><em>this</em><em> </em><em>help</em><em>!</em>
Answer:
(C) Energy is released when the electron is ejected from the atom.
Explanation:
In the Bohr model of the atom, electrons are arranged in energy levels. The electrons in the lowest energy levels are nearest to the nucleus. An electron may move from a lower to a higher energy level by absorbing energy that is equal to the difference between the energies of the higher and lower energy level.
The potential energy of all electrons inside the atom have negative values and an electron which is infinitely far from the nucleus has an electrostatic potential energy of zero.
Energy is absorbed when an electron is removed from the atom (ionization). Hence the process is highly endothermic. Therefore it is false to say that "Energy is released when the electron is ejected from the atom."
Answer:
Can you please tell us what the following are?
Answer:
magnesium
Explanation:
magnesium is in Group 2, in the periodic table. this means that it has 2 valence electrons. the less valence electrons an element or atom has, the more reactive. Selenium has 6 valence electrons. as a result, Mg is more reactive
Answer:
4
Explanation:
Speed=Distance/time, so 20/5 divide time divided by distance. so the answer is 4.