Answer: Thus the solubility of
gas in water, at the same temperature, if the partial pressure of gas is 10.0 atm is 235mg/100g.
Explanation:-
The Solubility of
in water can be calculated by Henry’s Law. Henry’s law gives the relation between gas pressure and the concentration of dissolved gas.
Formula of Henry’s law,
.
= Henry’s law constant = ?
The partial pressure (P) of
in water = 4.07 atm
\

At pressure of 10.0 atm

Thus the solubility of
gas in water, at the same temperature, is 235mg/100g
Answer:
C. 1 proton 3 neutrons
Explanation:
A nucleus is more stable if the ratio of the neutrons to protons is between 1:1 and 1:1.5.
Thus the ratios of neutrons to protons for the nuclei are as follows
A- 1:1
B- 1:1
C- 1:3
D- 1:2
Among these ratios, C is the greatest thus the nucleus is the least stable.
Answer:
Explanation:
The Ideal Gas Law states that PV=nRT.
Rearrange that into P/n=RT/V.
In this case, the cylinder is rigid so the volume, V, does not change.
Temperature does not change either.
Out of 450 grams of gas, 150 grams leak out. So only 450-150 = 300 grams is left.
n is number of moles which is dependent on mass:
n1/n2 = 450/300 = 3/2
P1/n1 = RT/V = P2/n2
P2 = P1/n1*n2
= 7.2/3*2
= 4.8 atmosphere
Explanation:
D No cap tell me if dis helped <3