Answer: it they are both in the same place
Explanation:I don’t know and don’t care loser
I would say the answer is A - a stars mass
The majority of stars in the galaxy, including our Sun, Sirius and Alpha Centauri A and B are all main sequence stars.
Mass is the key factor in determining the lifespan of a main sequence star, its size and its luminosity ( brightness)
Two characteristics define brightness: luminosity and magnitude. Luminosity is the amount of light that a star radiates. The size of the star and its surface temperature determine its luminosity. Apparent magnitude of a star is its perceived brightness, factoring in size and distance, while absolute magnitude is its true brightness irrespective of its distance from earth.
Answer:
Freezing T° of solution = - 4.52°C
Explanation:
ΔT = Kf . m . i
That's the formula for colligative property about freezing point depression.
Li₂O is an oxide that can not be dissociated but, if we see it's a ionic compound.
Li₂O → 2Li⁺ + O⁻²
3 moles of ions have been formed. Ions dissolved in solution are i, what we call Van't Hoff factor.
m is molality → 0.811 m, this is data
Kf →Cryoscopic constant, for water is 1.86 °C/m
and ΔT = Freezing T° of pure solvent - Freezing T° of solution
We replace: 0°C - Freezing T° of solution = 1.86°C/m . 0.811 m . 3
Freezing T° of solution = - 4.52°C
Answer:
V = 16.81 L
Explanation:
Given data:
Number of moles = 0.75 mol
Temperature = standard = 273 K
Pressure = 1 atm
Volume of balloon = ?
Solution:
The given problem will be solve by using general gas equation,
PV = nRT
P= Pressure
V = volume
n = number of moles
R = general gas constant = 0.0821 atm.L/ mol.K
T = temperature in kelvin
Now we will rearrange the formula.
V = nRT/P
V = 0.75 mol ×0.0821 atm.L/mol.K ×273 K / 1 atm
V = 16.81 atm.L/ 1 atm
V = 16.81 L