Answer:

Explanation:
Hello,
In this case, we write the reaction again:

In such a way, the first thing we do is to compute the reacting moles of lead (II) nitrate and potassium iodide, by using the concentration, volumes, densities and molar masses, 331.2 g/mol and 166.0 g/mol respectively:

Next, as lead (II) nitrate and potassium iodide are in a 1:2 molar ratio, 0.04635 mol of lead (II) nitrate will completely react with the following moles of potassium nitrate:

But we only have 0.07885 moles, for that reason KI is the limiting reactant, so we compute the yielded grams of lead (II) iodide, whose molar mass is 461.01 g/mol, by using their 2:1 molar ratio:

Best regards.
Answer:
sorry to waste ur time but im getting points bc i have a question and i need more points to say ig
These are called ocean or underwater trenches <span />
Answer:
option A = C₂H₄ + 3O₂ → 2CO₂ + 2H₂O
Explanation:
Law of conservation of mass:
This law stated that mass can not be created or destroyed in chemical reaction. It just changed from one to another form.
For example:
C₂H₄ + 3O₂ → 2CO₂ + 2H₂O
28 g + 96 g = 88 g + 36 g
124 g = 124 g
This reaction correctly hold the law of conservation of mass.
Other options:
C + 4H₂ → CH₄
12 g + 8g = 16 g
20 g = 16 g
This reaction do not hold the law of conservation of mass.
3H₂O → 3H₂ + 3O₂
54 g = 6 g + 96 g
54 g = 102 g
This reaction do not hold the law of conservation of mass.
2Na + Cl → NaCl
46 g + 35.5 g = 58.5 g
81.5 g = 58.5 g
This reaction do not hold the law of conservation of mass.