The other students in the lab should be notified next in this type of scenario.
<h3>What is an acid?</h3>
This is a substance which donates protons and is very corrosive. It also turns blue litmus paper red.
When it was spilled and baking soda was used to neutralize it on the floor , it is best to inform the other students too so as to prevent them from being exposed by mistake thereby reducing risk of injury.
Read more about Acid here brainly.com/question/25148363
#SPJ1
The molar mass of the compound potassium nitrate, KNO3 is equal to 101.1032 g/mol. Then, we determine the number of moles present in the given amount,
n = 11.75g / (101.1032 g/mol) = 0.116 mol
Then, molarity is calculated by dividing the number of moles by the volume of the solution. The answer is therefore 0.058 M.
Explanation:
Apply the mass of balance as follows.
Rate of accumulation of water within the tank = rate of mass of water entering the tank - rate of mass of water releasing from the tank
[/tex]\frac{dh}{dt} + \frac{0.01}{0.01}h[/tex] =
+ h = 1
= 1 - h
= dt
= t + C
Given at t = 0 and V = 0
= 0
or, h = 0
-ln(1 - h) = t + C
Initial condition is -ln(1) = 0 + C
C = 0
So, -ln(1 - h) = t
or, t = ........... (1)
(a) Using equation (1) calculate time to fill the tank up to 0.6 meter from the bottom as follows.
t =
t =
=
= 0.916 seconds
(b) As maximum height of water level in the tank is achieved at steady state that is, t = .
1 - h = exp (-t)
1 - h = 0
h = 1
Hence, we can conclude that the tank cannot be filled up to 2 meters as maximum height achieved is 1 meter.
<span>Chemically speaking, rust is a base and any acid will remove it. The choice of acid is going to be the thing to consider, since acid + base = salt and water. Phosphoric acid left a residue because the salt Iron phosphate is insoluble in water. Iron's soluble salts include the chloride, the sulfate and the nitrate. Industrially speaking, you need to "pickle" your iron. Pickling is a process in which dilute sulfuric acid is used to remove any surface corrosion prior to either painting or plating an iron surface. Sulfuric acid is ordinary battery acid and the salt Iron sulfate is not toxic. Sulfuric acid is one of the most common acids used (besides hydrochloric acid). The dilute kind is not terribly corrosive but concentrated sulfuric acid is a thick, syrupy liquid which can cause some nasty chemical burns if allowed to remain on the skin. It also heats up quite a lot when water is added, so this is an "Acid to water not water to acid" situation. The other choice is Hydrochloric acid, known as muriatic acid. The 20% concentrate is available in nearly any hardware store. It isn't as corrosive as concentrated sulfuric acid, but it has a burning, acrid stench, so never use the concentrate without adequate ventilation. It is ordinarily used to remove hard water deposits (boiler scale) but does a good on on rust as well. Concentrated Iron chloride isn't entirely inert but lots of rinsing will turn it back into harmless rust/sludge, especially if the rince water is naturally hard. Nitric acid will remove corrosion from anything, but it is extremely corrosive, smells worse then Hydrochloric acid and isn't easy to get, since it can be used to create some powerful explosives</span>
<u>Answer:</u> The amount of energy absorbed by water is 5390 Calories
<u>Explanation:</u>
To calculate the amount of heat absorbed at normal boiling point, we use the equation:
where,
q = amount of heat absorbed = ?
m = mass of water = 10 grams
= latent heat of vaporization = 539 Cal/g
Putting values in above equation, we get:
Hence, the amount of energy absorbed by water is 5390 Calories