When you plot the offered points on the graph, you find only one of them falls inside the shaded region:
... D. 43 pepperoni slices and 25 cheese slices
Answer:
Step-by-step explanation:
1) ?
I can't see what that one given angle is .. but it's that mystery angle subtracted from 180 give the angle BOA then you know that's an isosceles triangle again that the BOA is part of... so then just subtract BOA from 180 to find the two other angle of that triangle... they are the small so just divide your answer of 180-BOA /2 is the angle of each.. then since you know those to smaller angles subtract one from 90 to find the angle BAX
2) ( as we would read normally)
You're making this really tough on me.. I can just barely read the equations
I think it's 1+6x and 7x-3 . b/c they are the same length sides you can set those equal
1+6x = 7x -3
4+6x = 7x
4 = x
that worked out well :
for the tangent.. it's Tan(Ф)= Opp/ Adj
but I don't know which side they want to solve for.. I think you may have left off some of the instructions???? :/
ohh I think they really mean.. what's the length of the tangent lines .. that was confusing to me.. :/ just plug in 4 into x for either eq.
1+6(4) = 25
or
7(4)-3=25
tangent is 25
3)
x-2 = 2x-10
x+8 = 2x
8 = x
again they made it work out easy :)
Then plug 8 into either equation to find the length of the tangent lines
8-2=10
tangent is 10
4) = 2) ??? they are the same question maybe you meant to put something else?
Amount owed at the end of 1 year is 3640
<h3><u>Solution:</u></h3>
Given that yoko borrows $3500.
Rate of interest charged is 4% compounded each year
Need to determine amount owed at the end of 1 year.
In our case
:
Borrowed Amount that is principal P = $3500
Rate of interest r = 4%
Duration = 1 year and as it is compounded yearly, number of times interest calculated in 1 year n = 1
<em><u>Formula for Amount of compounded yearly is as follows:</u></em>

Where "p" is the principal
"r" is the rate of interest
"n" is the number of years
Substituting the values in above formula we get


Hence amount owed at the end of 1 year is 3640
The next term in the sequence is double the previous term . so it would be the 3rd option (48,96,192)