Answer:
a= 23.65 ft/s²
Explanation:
given
r= 14.34m
ω=3.65rad/s
Ф=Ф₀ + ωt
t = Ф - Ф₀/ω
= (98-0)×
/3.65
98°= 1.71042 rad
1.7104/3.65
t= 0.47 s
r₁(not given)
assuming r₁ =20 in
r₁ = r₀ + ut(uniform motion)
u = r₁ - r₀/t
r₀ = 14.34 in= 1.195 ft
r₁ = 20 in = 1.67 ft
= (1.667 - 1.195)/0.47
0.472/0.47
u= 1.00ft/s
acceleration at collar p
a=rω²
= 1.67 × 3.65²
a = 22.25ft/s²
acceleration of collar p related to the rod = 0
coriolis acceleration = 2ωu
= 2× 3.65×1 = 7.3 ft/s²
acceleration of collar p
= 22.5j + 0 + 7.3i
√(22.5² + 7.3²)
the magnitude of the acceleration of the collar P just as it reaches B in ft/s²
a= 23.65 ft/s²
Answer:
Lilly's speed is two times John's speed.
Explanation:
m = Mass
a = Acceleration
t = Time taken
u = Initial velocity
v = Final velocity
The force they apply on each other will be equal




Hence, Lilly's speed is two times John's speed.
Answer:
The answer is "Repetition"
Explanation: when you say something more than 3 times, is called repetiton
Answer:
a)

b)
m = 48lb
c)
b = 144.76lb
Explanation:
The general equation of a damping oscillate motion is given by:
(1)
uo: initial position
m: mass of the block
b: damping coefficient
w: angular frequency
α: initial phase
a. With the information given in the statement you replace the values of the parameters in (1). But first, you calculate the constant b by using the information about the viscous resistance force:

Then, you obtain by replacing in (1):
6in = 0.499 ft

b.
mass, m = 48lb
c.
b = 144.76 lb/s
For the first one, leaves is matter.
for the second one, ability to react
hope this helps