1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kenny6666 [7]
3 years ago
5

Two ice skaters, Lilly and John, face each other while at rest, and then push against each other's hands. The mass of John is tw

ice that of Lilly. How do their speeds compare after they push off? Lilly's speed is one-fourth of John's speed. Lilly's speed is the same as John's speed. Lilly's speed is two times John's speed. Lilly's speed is four times John's speed. Lilly's speed is one-half of John's speed.
Physics
1 answer:
seropon [69]3 years ago
4 0

Answer:

Lilly's speed is two times John's speed.

Explanation:

m = Mass

a = Acceleration

t = Time taken

u = Initial velocity

v = Final velocity

The force they apply on each other will be equal

F=ma\\\Rightarrow a_l=\frac{F}{m_l}

F=ma\\\Rightarrow a_j=\frac{F}{2m_l}\\\Rightarrow a_j=\frac{1}{2}a_l

v=u+at\\\Rightarrow v_l=0+\frac{F}{m_l}\times t\\\Rightarrow v_l=a_lt

v=u+at\\\Rightarrow v_l=0+\frac{F}{2m_l}\times t\\\Rightarrow v_j=\frac{1}{2}a_lt\\\Rightarrow v_j=\frac{1}{2}v_l\\\Rightarrow v_l=2v_j

Hence, Lilly's speed is two times John's speed.

You might be interested in
Gravity is a force between any two objects with mass wht doesn’t a person feel a gravitational force between them herself and an
kipiarov [429]
It is because both of them are attracted towards earth where the heavier body gravity field influence is more in comparision to small. For eg; there are two magnet with less power in besides of huge power or magnetic influence then both of the less power magnet are attracted towards the huge one rather than attracting themselves.


Hope its helps u!
6 0
3 years ago
A projectile of mass m is launched with an initial velocity vector v i making an angle θ with the horizontal as shown below. The
sergeinik [125]
Angular momentum is given by the length of the arm to the object, multiplied by the momentum of the object, times the cosine of the angle that the momentum vector makes with the arm. From your illustration, that will be: 
<span>L = R * m * vi * cos(90 - theta) </span>

<span>cos(90 - theta) is just sin(theta) </span>
<span>and R is the distance the projectile traveled, which is vi^2 * sin(2*theta) / g </span>

<span>so, we have: L = vi^2 * sin(2*theta) * m * vi * sin(theta) / g </span>

<span>We can combine the two vi terms and get: </span>

<span>L = vi^3 * m * sin(theta) * sin(2*theta) / g </span>

<span>What's interesting is that angular momentum varies with the *cube* of the initial velocity. This is because, not only does increased velocity increase the translational momentum of the projectile, but it increase the *moment arm*, too. Also note that there might be a trig identity which lets you combine the two sin() terms, but nothing jumps out at me right at the moment. </span>

<span>Now, for the first part... </span>

<span>There are a few ways to attack this. Basically, you have to find the angle from the origin to the apogee (highest point) in the arc. Once we have that, we'll know what angle the momentum vector makes with the moment-arm because, at the apogee, we know that all of the motion is *horizontal*. </span>

<span>Okay, so let's get back to what we know: </span>

<span>L = d * m * v * cos(phi) </span>

<span>where d is the distance (length to the arm), m is mass, v is velocity, and phi is the angle the velocity vector makes with the arm. Let's take these one by one... </span>

<span>m is still m. </span>
<span>v is going to be the *hoizontal* component of the initial velocity (all the vertical component got eliminated by the acceleration of gravity). So, v = vi * cos(theta) </span>
<span>d is going to be half of our distance R in part two (because, ignoring friction, the path of the projectile is a perfect parabola). So, d = vi^2 * sin(2*theta) / 2g </span>

<span>That leaves us with phi, the angle the horizontal velocity vector makes with the moment arm. To find *that*, we need to know what the angle from the origin to the apogee is. We can find *that* by taking the arc-tangent of the slope, if we know that. Well, we know the "run" part of the slope (it's our "d" term), but not the rise. </span>

<span>The easy way to get the rise is by using conservation of energy. At the apogee, all of the *vertical* kinetic energy at the time of launch (1/2 * m * (vi * sin(theta))^2 ) has been turned into gravitational potential energy ( m * g * h ). Setting these equal, diving out the "m" and dividing "g" to the other side, we get: </span>

<span>h = 1/2 * (vi * sin(theta))^2 / g </span>

<span>So, there's the rise. So, our *slope* is rise/run, so </span>

<span>slope = [ 1/2 * (vi * sin(theta))^2 / g ] / [ vi^2 * sin(2*theta) / g ] </span>

<span>The "g"s cancel. Astoundingly the "vi"s cancel, too. So, we get: </span>

<span>slope = [ 1/2 * sin(theta)^2 ] / [ sin(2*theta) ] </span>

<span>(It's not too alarming that slope-at-apogee doesn't depend upon vi, since that only determines the "magnitude" of the arc, but not it's shape. Whether the overall flight of this thing is an inch or a mile, the arc "looks" the same). </span>

<span>Okay, so... using our double-angle trig identities, we know that sin(2*theta) = 2*sin(theta)*cos(theta), so... </span>

<span>slope = [ 1/2 * sin(theta)^2 ] / [ 2*sin(theta)*cos(theta) ] = tan(theta)/4 </span>

<span>Okay, so the *angle* (which I'll call "alpha") that this slope makes with the x-axis is just: arctan(slope), so... </span>

<span>alpha = arctan( tan(theta) / 4 ) </span>

<span>Alright... last bit. We need "phi", the angle the (now-horizontal) momentum vector makes with that slope. Draw it on paper and you'll see that phi = 180 - alpha </span>

<span>so, phi = 180 - arctan( tan(theta) / 4 ) </span>

<span>Now, we go back to our original formula and plug it ALL in... </span>

<span>L = d * m * v * cos(phi) </span>

<span>becomes... </span>

<span>L = [ vi^2 * sin(2*theta) / 2g ] * m * [ vi * cos(theta) ] * [ cos( 180 - arctan( tan(theta) / 4 ) ) ] </span>

<span>Now, cos(180 - something) = cos(something), so we can simplify a little bit... </span>

<span>L = [ vi^2 * sin(2*theta) / 2g ] * m * [ vi * cos(theta) ] * [ cos( arctan( tan(theta) / 4 ) ) ] </span>
3 0
3 years ago
Read 2 more answers
A motor does 8000j of work in 20 seconds. What is the power of the motor
lozanna [386]
Power = work / time = 8000J / 20s = 400W

5 0
3 years ago
boris the bear is lumbering along at a constant rate of 4.0 m/s. if he walks for 600.0 seconds, how far will he travel?​
irina1246 [14]

Answer: 2400m

Explanation: 2400m because 600 times 4 equals 2400

6 0
4 years ago
What are all the principles of Cell Theory. Group of answer choices Cell only form from living cells All cells have chromosomes
Marta_Voda [28]

Answer:

Cell theory is the scientific theory that states that all living things are composed of cells and that cells are the basic unit of life. The three principles of cell theory are the cell is the smallest unit of life, all cells come from preexisting cells, and cells are the basic unit of function in living things.

Explanation:

Please mark me brainliest

6 0
2 years ago
Other questions:
  • Two skaters begin at rest. Skater 1 has a smaller mass than Skater 2. After they push off each other,...
    15·2 answers
  • Why do toasters always have a setting that burns the toast to a horrible crisp, which no decent human being would eat?
    13·2 answers
  • Give one advantage and one disadvantage of physical models
    15·1 answer
  • involves removing the top layer of earth, mining the coal, and then replacing the earth back on the surface.
    6·1 answer
  • Does a thicker core make the electromagnet stronger?
    8·2 answers
  • For the vectors in the figure, with a = 16, b = 12, and c = 20 what are (a) the magnitude and (b) the direction of
    11·1 answer
  • How much work is done when 100 N of force is applied to a rock to move it 20 m
    6·1 answer
  • Is a light sensitive screen​
    12·1 answer
  • How long does it take for a bicycle traveling 7.0 m/s to come to a stop if the
    12·2 answers
  • Which statement describes how nuclear power generation systems work?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!