1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DedPeter [7]
3 years ago
11

Calculate the mass of iron oxide that contains a trillion iron atoms

Chemistry
1 answer:
4vir4ik [10]3 years ago
4 0
<h3>i think its help</h3><h3>iron ( III )</h3><h3>oxide ( Fe,O )</h3>
You might be interested in
#1: How are the elements arranged in the modern periodic table?
Alekssandra [29.7K]

1- The correct answer is C :


the elements arranged in the modern periodic table by increasing atomic number.


The explanation:


-The elements in the periodic table are arranged to increase the atomic number. All of these elements display several other trends and we can use the periodic law and table formation to predict their chemical, physical, and atomic properties.


2- The correct answer is C:


strontium, magnesium, calcium, beryllium are the elements which have similar properties.


The explanation:

-strontium, magnesium, calcium, beryllium, these belong to the alkaline earth metal group.

Because the outer electron structure in all of these elements is similar, they all have somewhat similar chemical and physical properties .

3- The correct answer is A :


Potassium


The explanation:


-The elements potassium and sodium have similar chemical properties because they have the same number of valence electrons and form +1 ions.



4- The correct answer is D


The explanation:


Mendeleev didn't include helium, neon, and argon in his periodic table because these elements had not yet been discovered.


5- The correct answer is B:


The periodic law describes trends seen across periods within the periodic table.


The explanation:


When the chemical elements are arranged, there is a pattern called the “periodic law” in their properties, in which elements in the same column (group) have similar properties


4 0
3 years ago
Read 2 more answers
based on table s an atom of which elements has the weakest attraction for electrons in a chemical bond
Norma-Jean [14]
It seems that you have missed the necessary table for us to answer this question, so I had to look for it. Anyway, here is the answer. <span>Based on Table S, an atom of the element POLONIUM has the weakest attraction for electrons in a chemical bond. Hope this answers your question.</span>
5 0
3 years ago
In the diagram below, west is to the left, east is to the right, and the observer is looking toward the north. What is the direc
Damm [24]
I think the answer is c since the it’s looking at NW, the wind is coming from SE
7 0
2 years ago
Read 2 more answers
If a gas had a volume of 6.7 L and started at STP, what would the new pressure be
Phantasy [73]

The new pressure would be = 4.46 atm

<h3>Further explanation</h3>

Given

V₁=6.7 L(at STP, 1 atm 273 K)

V₂=1.5 L

Required

The new pressure

Solution

Boyle's Law  

At a constant temperature, the gas volume is inversely proportional to the pressure applied  

\rm p_1V_1=p_2.V_2\\\\\dfrac{p_1}{p_2}=\dfrac{V_2}{V_1}

P₂ = (P₁V₁)/V₂

P₂ = (1 atm x 6.7 L)/1.5 L

P₂ = 4.46 atm

5 0
2 years ago
Write the electron configuration for the following elements:
vazorg [7]

Answer:

a.Carbon [He]2s22p2

b. Neon [He]2s22p6

c. Sulfur [Ne]3s23p4

d.Lithium [He]2s1

e. Argon [Ne]3s23p6

f. Oxygen [He]2s22p4

g.Potassium [Ar]4s1

h. Helium 1s2

This table is available to download as a PDF to use as a study sheet.

NUMBER ELEMENT ELECTRON CONFIGURATION

1 Hydrogen 1s1

2 Helium 1s2

3 Lithium [He]2s1

4 Beryllium [He]2s2

5 Boron [He]2s22p1

6 Carbon [He]2s22p2

7 Nitrogen [He]2s22p3

8 Oxygen [He]2s22p4

9 Fluorine [He]2s22p5

10 Neon [He]2s22p6

11 Sodium [Ne]3s1

12 Magnesium [Ne]3s2

13 Aluminum [Ne]3s23p1

14 Silicon [Ne]3s23p2

15 Phosphorus [Ne]3s23p3

16 Sulfur [Ne]3s23p4

17 Chlorine [Ne]3s23p5

18 Argon [Ne]3s23p6

19 Potassium [Ar]4s1

20 Calcium [Ar]4s2

21 Scandium [Ar]3d14s2

22 Titanium [Ar]3d24s2

23 Vanadium [Ar]3d34s2

24 Chromium [Ar]3d54s1

25 Manganese [Ar]3d54s2

26 Iron [Ar]3d64s2

27 Cobalt [Ar]3d74s2

28 Nickel [Ar]3d84s2

29 Copper [Ar]3d104s1

30 Zinc [Ar]3d104s2

31 Gallium [Ar]3d104s24p1

32 Germanium [Ar]3d104s24p2

33 Arsenic [Ar]3d104s24p3

34 Selenium [Ar]3d104s24p4

35 Bromine [Ar]3d104s24p5

36 Krypton [Ar]3d104s24p6

37 Rubidium [Kr]5s1

38 Strontium [Kr]5s2

39 Yttrium [Kr]4d15s2

40 Zirconium [Kr]4d25s2

41 Niobium [Kr]4d45s1

42 Molybdenum [Kr]4d55s1

43 Technetium [Kr]4d55s2

44 Ruthenium [Kr]4d75s1

45 Rhodium [Kr]4d85s1

46 Palladium [Kr]4d10

47 Silver [Kr]4d105s1

48 Cadmium [Kr]4d105s2

49 Indium [Kr]4d105s25p1

50 Tin [Kr]4d105s25p2

51 Antimony [Kr]4d105s25p3

52 Tellurium [Kr]4d105s25p4

53 Iodine [Kr]4d105s25p5

54 Xenon [Kr]4d105s25p6

55 Cesium [Xe]6s1

56 Barium [Xe]6s2

57 Lanthanum [Xe]5d16s2

58 Cerium [Xe]4f15d16s2

59 Praseodymium [Xe]4f36s2

60 Neodymium [Xe]4f46s2

61 Promethium [Xe]4f56s2

62 Samarium [Xe]4f66s2

63 Europium [Xe]4f76s2

64 Gadolinium [Xe]4f75d16s2

65 Terbium [Xe]4f96s2

66 Dysprosium [Xe]4f106s2

67 Holmium [Xe]4f116s2

68 Erbium [Xe]4f126s2

69 Thulium [Xe]4f136s2

70 Ytterbium [Xe]4f146s2

71 Lutetium [Xe]4f145d16s2

72 Hafnium [Xe]4f145d26s2

73 Tantalum [Xe]4f145d36s2

74 Tungsten [Xe]4f145d46s2

75 Rhenium [Xe]4f145d56s2

76 Osmium [Xe]4f145d66s2

77 Iridium [Xe]4f145d76s2

78 Platinum [Xe]4f145d96s1

79 Gold [Xe]4f145d106s1

80 Mercury [Xe]4f145d106s2

81 Thallium [Xe]4f145d106s26p1

82 Lead [Xe]4f145d106s26p2

83 Bismuth [Xe]4f145d106s26p3

84 Polonium [Xe]4f145d106s26p4

85 Astatine [Xe]4f145d106s26p5

86 Radon [Xe]4f145d106s26p6

87 Francium [Rn]7s1

88 Radium [Rn]7s2

89 Actinium [Rn]6d17s2

90 Thorium [Rn]6d27s2

91 Protactinium [Rn]5f26d17s2

92 Uranium [Rn]5f36d17s2

93 Neptunium [Rn]5f46d17s2

94 Plutonium [Rn]5f67s2

95 Americium [Rn]5f77s2

96 Curium [Rn]5f76d17s2

97 Berkelium [Rn]5f97s2

98 Californium [Rn]5f107s2

99 Einsteinium [Rn]5f117s2

100 Fermium [Rn]5f127s2

101 Mendelevium [Rn]5f137s2

102 Nobelium [Rn]5f147s2

103 Lawrencium [Rn]5f147s27p1

104 Rutherfordium [Rn]5f146d27s2

105 Dubnium *[Rn]5f146d37s2

106 Seaborgium *[Rn]5f146d47s2

107 Bohrium *[Rn]5f146d57s2

108 Hassium *[Rn]5f146d67s2

109 Meitnerium *[Rn]5f146d77s2

110 Darmstadtium *[Rn]5f146d97s1

111 Roentgenium *[Rn]5f146d107s1

112 Copernium *[Rn]5f146d107s2

113 Nihonium *[Rn]5f146d107s27p1

114 Flerovium *[Rn]5f146d107s27p2

115 Moscovium *[Rn]5f146d107s27p3

116 Livermorium *[Rn]5f146d107s27p4

117 Tennessine *[Rn]5f146d107s27p5

118 Oganesson *[Rn]5f146d107s27p6

Explanation:

I hope it's help

8 0
2 years ago
Other questions:
  • A (what) forms when the sperm first fertilizes an egg
    8·1 answer
  • Sentence for death rate
    10·1 answer
  • A critical biotic factor in Yellowstone National Park is
    12·1 answer
  • The temperature is changed from 298 K to 264 k how would that affect the chemical equilibria ​
    9·1 answer
  • A group of students want to see how temperature affects the time spilled water to dry up what will be independent and dependent
    12·1 answer
  • To convert from mass of X to liters of Y in any stoichiometry problem, the following steps must be followed
    13·1 answer
  • If a ball rolling down a hill is half way between the top and bottom, how much potential energy does the ball have compared to k
    14·1 answer
  • How to find valency?​
    14·2 answers
  • Summarize our current
    12·1 answer
  • Determine the name and formula of a hydrate with the following composition; 32.30%
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!