The question is incomplete. The complete question is as follows:
Solve for X. Assume X is a 2x2 matrix and I denotes the 2x2 identity matrix. Do not use decimal numbers in your answer. If there are fractions, leave them unevaluated. 
![\left[\begin{array}{cc}2&8\\-6&-9\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D2%268%5C%5C-6%26-9%5Cend%7Barray%7D%5Cright%5D) · X·
· X·![\left[\begin{array}{ccc}9&-3\\7&-6\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D9%26-3%5C%5C7%26-6%5Cend%7Barray%7D%5Cright%5D) =<em>I</em>.
 =<em>I</em>.
First, we have to identify the matrix <em>I. </em>As it was said, the matrix is the identiy matrix, which means
<em>I</em> = ![\left[\begin{array}{ccc}1&0\\0&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D) 
 
So, ![\left[\begin{array}{cc}2&8\\-6&-9\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D2%268%5C%5C-6%26-9%5Cend%7Barray%7D%5Cright%5D) · X·
· X·![\left[\begin{array}{ccc}9&-3\\7&-6\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D9%26-3%5C%5C7%26-6%5Cend%7Barray%7D%5Cright%5D) =
 =  ![\left[\begin{array}{ccc}1&0\\0&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D)
Isolating the X, we have
X·![\left[\begin{array}{ccc}9&-3\\7&-6\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D9%26-3%5C%5C7%26-6%5Cend%7Barray%7D%5Cright%5D) =
= ![\left[\begin{array}{cc}2&8\\-6&-9\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D2%268%5C%5C-6%26-9%5Cend%7Barray%7D%5Cright%5D) -
 -  ![\left[\begin{array}{ccc}1&0\\0&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D)
Resolving:
X·![\left[\begin{array}{ccc}9&-3\\7&-6\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D9%26-3%5C%5C7%26-6%5Cend%7Barray%7D%5Cright%5D) =
= ![\left[\begin{array}{ccc}2-1&8-0\\-6-0&-9-1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2-1%268-0%5C%5C-6-0%26-9-1%5Cend%7Barray%7D%5Cright%5D)
X·![\left[\begin{array}{ccc}9&-3\\7&-6\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D9%26-3%5C%5C7%26-6%5Cend%7Barray%7D%5Cright%5D) =
=![\left[\begin{array}{ccc}1&8\\-6&-10\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%268%5C%5C-6%26-10%5Cend%7Barray%7D%5Cright%5D)
Now, we have a problem similar to A.X=B. To solve it and because we don't divide matrices, we do X=A⁻¹·B. In this case,
X=![\left[\begin{array}{ccc}9&-3\\7&-6\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D9%26-3%5C%5C7%26-6%5Cend%7Barray%7D%5Cright%5D) ⁻¹·
⁻¹·![\left[\begin{array}{ccc}1&8\\-6&-10\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%268%5C%5C-6%26-10%5Cend%7Barray%7D%5Cright%5D)
Now, a matrix with index -1 is called Inverse Matrix and is calculated as: A . A⁻¹ = I.
So, 
![\left[\begin{array}{ccc}9&-3\\7&-6\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D9%26-3%5C%5C7%26-6%5Cend%7Barray%7D%5Cright%5D) ·
·![\left[\begin{array}{ccc}a&b\\c&d\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Da%26b%5C%5Cc%26d%5Cend%7Barray%7D%5Cright%5D) =
=![\left[\begin{array}{ccc}1&0\\0&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D)
9a - 3b = 1
7a - 6b = 0
9c - 3d = 0
7c - 6d = 1
Resolving these equations, we have a= ; b=
; b= ; c=
; c= and d=
 and d= . Substituting:
. Substituting:
X= ![\left[\begin{array}{ccc}\frac{2}{11} &\frac{-1}{11} \\\frac{7}{33}&\frac{-3}{11}  \end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Cfrac%7B2%7D%7B11%7D%20%26%5Cfrac%7B-1%7D%7B11%7D%20%5C%5C%5Cfrac%7B7%7D%7B33%7D%26%5Cfrac%7B-3%7D%7B11%7D%20%20%5Cend%7Barray%7D%5Cright%5D) ·
·![\left[\begin{array}{ccc}1&8\\-6&-10\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%268%5C%5C-6%26-10%5Cend%7Barray%7D%5Cright%5D)
Multiplying the matrices, we have
X=![\left[\begin{array}{ccc}\frac{8}{11} &\frac{26}{11} \\\frac{39}{11}&\frac{198}{11}  \end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Cfrac%7B8%7D%7B11%7D%20%26%5Cfrac%7B26%7D%7B11%7D%20%5C%5C%5Cfrac%7B39%7D%7B11%7D%26%5Cfrac%7B198%7D%7B11%7D%20%20%5Cend%7Barray%7D%5Cright%5D)
 
        
             
        
        
        
3 = 2 by z property 
Step-by-step explanation:
Congruence criteria for triangles
If two sides and the angle between them in one triangle have the same measures as two sides and the angle between them in another triangle, then the triangles are congruent.
Please mark as brainliest 
 
        
             
        
        
        
Answer:
please the answer is the third option 
 
        
                    
             
        
        
        
Because 2 squares equal a meter u have to do four up down one. (Front elevation)
Then just four by one square on second row down(side elevation)
 
        
        
        
Answer:
y = 7/5x - 14 3/5
Step-by-step explanation:
Point-slope form:
y + 9 = 7/5(x - 4)
y + 9 = 7/5x - 28/5
y = 7/5x - 14 3/5