For 12 density often has unit of grams per cubic centimeter (g/cm3)
Answer:
0.233
Explanation:
Given that
Diameter of rotor, d = 40 m
Power of rotor, P = 90 kW
Speed of the wind, v = 8 m/s
Density of air, p = 1.2 kg/m³
It is a known fact that
KE = ½mv², where mass flow rate, m
m = p.A.v, where Area, A
A = πd²/4
A = (3.142 * 40²)/4
A = 3.142 * 1600/4
A = 3.142 * 400
A = 1256.8 m², substitute for A in the mass flow rate equation
m = p.A.v
m = 1.2 * 1256.8 * 8
m = 12065.28, substitute for m in the KE equation
KE = ½mv²
KE = ½ * 12065.28 * 8²
KE = 12065.28 * 32
KE = 386088.96 W or
KE = 386.1 kW
Fraction of kinetic energy converted to electric energy is
Fraction = Electric Power / Total KE
Fraction = 90 / 386.1
Fraction = 0.233
If a particle undergoes simple harmonic motion with an amplitude of 0.21 meters, this means that the maximum displacement of the particle from its resting position is 0.21. For one period, it traveled from its starting position which is twice the amplitude and then back to its original position which is another distance that is twice the amplitude as well. Therefore, the total distance it traveled is 2*amplitude + 2*amplitude = 2*0.21 + 2*0.21 = 0.42 + 0.42 = 0.84 meters.
Answer:
21 m
Explanation:
The motion of the frog is a uniform motion (constant speed), therefore we can find the distance travelled by using

where
d is the distance covered
v is the speed
t is the time
The frog in this problem has a speed of
v = 2.1 m/s
and therefore, after t = 10 s, the distance it covered is

The light we see is red-shifted when we observe a galaxy that's moving AWAY FROM US.