The solution would be like
this for this specific problem:
<span>5.5 g = g + v^2/r </span><span>
<span>4.5 g =
v^2/r </span>
<span>v^2 = 4.5
g * r </span>
<span>v = sqrt
( 4.5 *9.81m/s^2 * 350 m) </span>
v = 124
m/s</span>
So the pilot will black out for this dive at 124
m/s. I am hoping that these answers have satisfied your query and it
will be able to help you in your endeavors, and if you would like, feel free to
ask another question.
Answer:
Explanation:
We are given that
The wavelength of sound wave=
1 cm/s=
Speed of sound wave,v=
We have to find the period of the wave.
We know that
Frequency=
Using the formula
Frequency = Hz
Time period=
Using identity:
Hence, the time period of the wave=
Within the system of the same star, the period of a planet's orbit is
proportional to the 3/2 power of its distance from the central body.
(Kepler's empirical third law of planetary motion, promoted to being
etched in stone by Newton's gravitation.)
(4) ^ 3/2 = <em>8 times</em> as long.
Answer:
Speed of wind = 50mi/hr, Speed of plane in still air = 400mi/hr
Explanation:
Let the speed of the wind = Vw,
Speed of the plane in still air = Vsa,
The first trip the average speed of the plane = 1575mi/4.5hours = 350mi/hr
The coming trip the wind behind = 1575mi/3.5hrs = 450
Write the motion in equation form
First trip ( the plane flew into the wind)
Vaverage = Vsa - Vw
350 = Vsa - Vw
Second trip the wind was behind
450 = Vsa +Vw
Adding the two equation
800 = 2Vas
Vas = 800/2 = 400mi/hr
Substitute for Vas into equation 1
350mi/hr = 400mi/hr - Vw
Vw = 400-350 = 50mi/hr