Answer:
c. is more than that of the fluid.
Explanation:
This problem is based on the conservation of energy and the concept of thermal equilibrium

m= mass
s= specific heat
\DeltaT=change in temperature
let s1= specific heat of solid and s2= specific heat of liquid
then
Heat lost by solid= 
Heat gained by fluid=
Now heat gained = heat lost
therefore,
1000 S_2=800 S_1
S_1=1.25 S_2
so the specific heat of solid is more than that of the fluid.
The answer is a rainforest I’m pretty sure
We have that valence electrons poses the three characteristics stated, as
Group 14 (carbon group) are identified by 4 valence electrons.
Valence electrons of atoms are used to form bonds.
Group 14 (carbon group) are identified by 4 valence electrons.
Option A,B,C
<h3>
Properties of Valence electrons</h3>
All elements in the same group or family have the same number of valence electrons: Yes, this is true as Group 14 (carbon group) are identified by 4 valence electrons.
Valence electrons are the only subatomic particles involved in forming bonds: Yes, Valence electrons of atoms are used to form bonds.
Carbon has 4 valence electrons because it is found in group 14:
True, Group 14 (carbon group) are identified by 4 valence electrons.
For more information on atoms visit
brainly.com/question/13981855
Answer:
y = 10.44cos(2t - 0.291) cm
Explanation:
y = Acos(2πt/T + φ) = Acos(2πt/π + φ) = Acos(2t + φ)
v = y' = -2Αsin(2t + φ)
10 = Acos(2(0) + φ) = Acosφ
6 = -2Αsin(2(0) + φ) = -2Asinφ
6/10 = -2Asinφ/Acosφ = -2tanφ
tanφ = -0.3
φ = -0.291 radians
10 = Acos(-0.291)
A = 10/cos(-0.291) = 10.44
Answer:
The pressure is 6570 lbf/ft²
The temperature is 766 ⁰R
The velocity is 2746.7 ft/s
deflection angle behind the wave is 17.56⁰
Explanation:
Speed of air at initial condition:

γ is the ratio of specific heat, R is the universal gas constant, and T is the initial temperature.
initial mach number

then, 
based on the values obtained, read off the following from table;
P₂/P₁ = 3.285
T₂/T₁ = 1.473
Mₙ₂ = 0.6355
Thus;
P₂ = 3.285P₁ = 3.285(2000) = 6570 lbf/ft²
T₂ = 1.473T₁ = 1.473(520⁰R) = 766 ⁰R
Again; to determine the velocity and deflection angle, first we calculate the mach number.




