Answer:
This formula R =ρL/A
Where R = resistance of wire, ρ = resistivity of the wire and A = area of the wire. Shows there is an inverse relationship between Resistance and Area of the wire.
Explanation:
A simple way to explain the physics behind such an electrical code is to compare the flow of current through wires to the flow of water through pipes, they are similar in any respect. The resistance to the flow of current in an electric circuit is similar to the frictional experienced by water when flowing through water pipes. Just as water will flow easily with little resistance through a water pipe with the larger cross-sectional area than one with a smaller cross-sectional area, in the same way, wires with larger cross-sectional area will allow the flow of larger amount of current compared to wires with smaller cross-sectional area assuming all other variables are the same.
From the formula R =ρL/A
Where R = resistance of wire, ρ = resistivity of the wire and A = area of the wire
We can see that the resistance and area of the wire have an inverse relationship. An increase in the area of the wire will lead to a decrease in the resistance of the wire.
Then everyone would fall off the surface
Answer:
Chicken Feet Or Butt Whole
Explanation:
Call Me Girls!
Answer:
<em>Hydrogen bond is the attractive force between the hydrogen attached electronegative atom </em>
Explanation:
Answer:
<em>The current is 1 A</em>
Explanation:
<u>Current in a Series Connection
</u>
When two or more elements are connected in series, all of them have the same current, and the sum of their individual voltages is the total voltage applied to the circuit.
According to Ohm's law:
V=R.I
Where V is the voltage, R is the resistance and I is the current of a circuit.
We have a voltage of V=1.5 V + 1.5 V = 3 V and a resistance of R=3 ohms.
We can calculate the current by solving for I:
The current is 1 A