Answer:
<em>K =400000 J</em>
Explanation:
<u>Kinetic Energy</u>
Is the energy an object has due to its state of motion. It's proportional to the square of the speed.
The equation for the kinetic energy is:

Where:
m = mass of the object
v = speed at which the object moves
The kinetic energy is expressed in Joules (J)
The car has a mass of m=2000 Kg and travels at v=20 m/s. Calculating the kinetic energy:

Calculating:
K =400000 J
Suppose earth is a soid sphere which will attract the body towards its centre.So, acc. to law of gravitation force on the body will be,
F=G*m1m2/R^2
but we now that F=ma
and here accleration(a)=accleration due to gravity(g),so
force applied by earth on will also be mg
replace above F in formula by mg and solve,
F=G*mE*m/R^2 ( here mE is mass of earth and m is mass of body)
mg=G*mEm/R^2
so,
g =G*mE/R^2
Answer:
He should stand from the center of laser pointed on the wall at 1.3 m.
Explanation:
Given that,
Wave length = 650 nm
Distance =10 m
Double slit separation d = 5 μm
We need to find the position of fringe
Using formula of distance



Put the value into the formula


Hence, He should stand from the center of laser pointed on the wall at 1.3 m.
The female reproductive system is designed to carry out several functions. It produces the female egg cells necessary for reproduction, called the ova or oocytes. The system is designed to transport the ova to the site of fertilization.
We can conclude that star A is closer to us than star B.
In fact, the absolute magnitude gives a measure of the brightness of the star, if all the stars are placed at the same distance from Earth. So, it's a measure of the absolute luminosity of the star, indipendently from its distance from us: since the two stars have same absolute magnitude, it means that if they were at same distance from Earth, they would appear with same luminosity. Instead, we see star A brighter than star B, and the only explanation is that star A is closer to Earth than star B (the closer the star A, the brigther it is)