1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andrews [41]
3 years ago
10

Unpolarized light with intensity I0I0I_0 is incident on an ideal polarizing filter. The emerging light strikes a second ideal po

larizing filter whose axis is at 45.0 ∘∘ to that of the first. Part A Determine the intensity of the beam after it has passed through the second polarizer. Enter the factor only. For example, enter 0.2500.250, that means your answer is I=0.250I0I=0.250I0. II = nothing I0I0 SubmitRequest Answer Part B Determine its state of polarization. Determine its state of polarization. The light is linearly polarized along the axis of the first filter. The light is linearly polarized along the axis of the second filter. The light is linearly polarized perpendicular to the axis of the second filter. The light is linearly polarized perpendicular to the axis of the first filter. SubmitRequest Answer Provide Feedback
Physics
1 answer:
Montano1993 [528]3 years ago
3 0

Answer:

A) I = Io 0.578,   B) he light that leaves the polarized is completely polarized, being perpendicular to the axis of the second filter

Explanation:

A) Light passing through a polarizer must comply with the / bad law

          I = Io cos2 tea

Where is at the angle of the polarizer and incident light

          I = Io cos2 45

         I = Io 0.578

Therefore the beam intensity is 0.578 of the incident intensity

.B) the light that leaves the polarized is completely polarized, being perpendicular to the axis of the second filter

You might be interested in
The mass of a ship before launch is 55,000 metric tons. The ship is launched down a ramp and drops a total of 10 vertical meters
skelet666 [1.2K]

Answer:

ΔT = 17.11 °C

Explanation:

In this case, we have a ship standing on a place with a given mass and it's about to be launched to a lock containing water.

At first, before launch, the ship has a potential energy, and when the ship hits the water after being launched, this potential energy is transformed into kinetic energy.

So, let's calculate first the potential energy of the ship:

E = mgh   (1)

We have the mass, gravity and height, so we need to replace the given data here. Before we do that, let's remember to use the correct units. A ton is 1000 kg, so replacing and converting we have:

E = (55000 ton * 1000 kg/ton) * (9.8 m/s²) * 10 m

E = 5.39x10⁹ J

Now this energy will be the same when the ship hits the water, only that is kinetic energy that will result in the rise of temperature. To get this rise we use the following expression:

E = m * C * ΔT   (2)

We have the energy, the mass of water (assuming density of water as 1 kg/m³) and the specific heat, so, replacing in (2) and solving for ΔT we have:

ΔT = E / m * C    (3)

ΔT = 5.39x10⁹ / 4200 * 75000

<h2>ΔT = 17.11 °C</h2>

Hope this helps

5 0
3 years ago
What is the acceleration of a 0.90g drop of blood in the fingertips at the bottom of the swing?
Scilla [17]
The acceleration of a 0.90 g drop of blood in the fingertips at the bottom of the swing is the sum of the acceleration of the movement of the finger and the acceleration of gravity. In this case, this is different when the finger goes down, since the acceleration now becomes the difference between the two.
5 0
3 years ago
A sphere of radius r = 5cm carries a uniform volume charge density rho = 400 nC/m^3. Q. What is the total charge Q of the sphere
Tanzania [10]

Answer:

The total charge Q of the sphere is 2.094\times10^{-10}\ C.

Explanation:

Given that,

Radius = 5 cm

Charge density J= 400\ nC/m^3

We need to calculate the total charge Q of the sphere

Using formula of charge

q=\rho V

Where, \rho = charge density

V = volume

Put the value into the formula

q=\rho\times(\dfrac{4}{3}\pi r^3)

Put the value into the formula

q=\dfrac{4}{3}\times\pi\times400\times10^{-9}\times(5\times10^{-2})^3

q=2.094\times10^{-10}\ C

Hence, The total charge Q of the sphere is 2.094\times10^{-10}\ C.

6 0
3 years ago
Burning oil and coal adds to the atmosphere.
True [87]

Answer:

carbon dioxide

Explanation:

8 0
3 years ago
Despite a very strong wind, a tennis player
Gnoma [55]

Answer:

Option 5. 1 and 3

Solution:

The only forces acting on the tennis ball after it has left contact with the racquet and the instant before it touches the ground are the force of gravity in the downward direction and the force by the air exerted on the ball.

The ball after it left follows the path of trajectory and as it moves forward in the horizontal direction the force of the air acts on it.

In the whole projectile motion of the ball, the acceleration due to gravity acts on the ball thus the force of gravity acts on the ball in the downward direction  before it hits the ground.

6 0
3 years ago
Other questions:
  • Odyssey Quiz
    10·1 answer
  • 0.013*30A 340 g bird flying along at 6.0 m/s sees a 13 g insect heading straight toward it with a speed of 30 m/s. The bird open
    13·1 answer
  • WILL GIVE BRAINLY!! A hippogriff is a large flying creature that Hagrid watches over at Hogwarts. If the Hippogriff’s mass is 12
    12·2 answers
  • A mechanic test driving a car that she has just given a tune-up accelerates from rest to 50.0 m/s in 9.8 s. How far (in meters)
    11·1 answer
  • PLS ANSWER ASAP!!
    14·1 answer
  • Two electrostatic point charges of +53.0 µC and +44.0 µC exert a repulsive force on each other of 166 N. What is the distance be
    7·1 answer
  • Which of the following is not like the others?
    11·1 answer
  • HELPpPpo ASAP
    5·1 answer
  • 7. A child pulls a sled up a snow-covered hill. The child does 360 J of
    9·2 answers
  • Pls help me with a physics question I am struggling
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!