This question involves the concepts of echo, ultrasonic images, ultrasonic sound waves.
The process of ultrasonic images uses the "echo" property of the sound waves.
Echo is the property of the sound wave by the virtue of which the sound wave reflects back to the source of the sound after hitting a surface or an object.
Ultrasonic images are obtained from inside organs of our body. This process involves the use of ultrasonic sound waves that have a frequency greater than 20,000 Hz. These sound waves are out of the range of audible sound by the human ear. When these ultrasonic sound waves are sent in form of pulses into the human body by the use of probes, they reflect back from the tissues of different organs to the probe. The probe then records the reflection properties of these sound waves and displays them in form of an image, known as ultrasonic images.
Learn more about echo here:
brainly.com/question/14335186?referrer=searchResults
The attached picture shows the process of ultrasonic imaging.
Answer:
2
Explanation:
To find force it's force = mass times acceleration so to find mass you would divide force by acceleration
Answer:
a. (a) grating A has more lines/mm; (b) the first maximum less than 1 meter away from the center
Explanation:
Let n₁ and n₂ be no of lines per unit length of grating A and B respectively.
λ₁ and λ₂ be wave lengths of green and red respectively , D be distance of screen and d₁ and d₂ be distance between two slits of grating A and B ,
Distance of first maxima for green light
= λ₁ D/ d₁
Distance of first maxima for red light
= λ₂ D/ d₂
Given that
λ₁ D/ d₁ = λ₂ D/ d₂
λ₁ / d₁ = λ₂ / d₂
λ₁ / λ₂ = d₁ / d₂
But
λ₁ < λ₂
d₁ < d₂
Therefore no of lines per unit length of grating A will be more because
no of lines per unit length ∝ 1 / d
If grating B is illuminated with green light first maxima will be at distance
λ₁ D/ d₂
As λ₁ < λ₂
λ₁ D/ d₂ < λ₂ D/ d₂
λ₁ D/ d₂ < 1 m
In this case position of first maxima will be less than 1 meter.
Option a is correct .
Answer:
<h2>E. 3.95kW</h2>
Explanation:
Power is defined as the rate of workdone.
Power = Workdone/time taken
Given Workdone = Force * distance
Power = Force * distance/time taken
Power = mgd/t (F = mg)
m = mass of the sand in kg
g = acceleration due to gravity in m/s²
d = vertical distance covered in metres
t = time taken in seconds
Given m = 2000kg, d = 12m, t = 1min = 60secs, g = 9.8m/s²
Power = 2000*9.8*12/60
Power = 3920Watts
Minimum rate of power that must be supplied to this machine is 3920Watts or 3.92kW
Answer:
y^16
Explanation:
who need to add the exponents only
7 + 9 = 16
therefore, the answer is y^16