Answer:
The ratio [A-]/[HA] increase when the pH increase and the ratio decrease when the pH decrease.
Explanation:
Every weak acid or base is at equilibrium with its conjugate base or acid respectively when it is dissolved in water.
⇄ 
This equilibrium depends on the molecule and it acidic constant (Ka). The Henderson-Hasselbalch equation,
![pH = pKa + Log \frac{[A^{-}]}{[HA]}](https://tex.z-dn.net/?f=pH%20%3D%20pKa%20%2B%20Log%20%5Cfrac%7B%5BA%5E%7B-%7D%5D%7D%7B%5BHA%5D%7D)
shows the dependency between the pH of the solution, the pKa and the concentration of the species. If the pH decreases the concentration of protons will increase and the ratio between A- and AH will decrease. Instead, if the pH increases the concentration of protons will decreases and the ratio between A- and AH will increase.
Hello,
I think the answer is B) It is second longest river in south america
Hope this helps!!
~Girlygir101~
"High temperatures make the gas molecules move more quickly" is the one sentence among all the choices given in the question that most likely explains why this reaction is carried out at high temperature. The correct option among all the options that are given in the question is the third option or option "C".