1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
o-na [289]
2 years ago
14

CAN YOU PLZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ HELP (24 points)

Mathematics
1 answer:
Radda [10]2 years ago
4 0

Answer:

I'll sing out

Step-by-step explanation:

give me a sec

You might be interested in
Show that (x-5) is a factor of x^3-3x^2-13x+15
mario62 [17]

Answer:

sorry not in that grade

Step-by-step explanation:

6 0
3 years ago
Annie has two equal sized amounts of wax in two different colors she used 5/8 of the green wax and 1/3 of the blue wax to make s
lana66690 [7]
Find a common denominator that 8 and 3 can go into.. which is 24
5/8 = 1/3 
15/24 - 8/24 
7/24

Hope this helped


6 0
2 years ago
(x^2y+e^x)dx-x^2dy=0
klio [65]

It looks like the differential equation is

\left(x^2y + e^x\right) \,\mathrm dx - x^2\,\mathrm dy = 0

Check for exactness:

\dfrac{\partial\left(x^2y+e^x\right)}{\partial y} = x^2 \\\\ \dfrac{\partial\left(-x^2\right)}{\partial x} = -2x

As is, the DE is not exact, so let's try to find an integrating factor <em>µ(x, y)</em> such that

\mu\left(x^2y + e^x\right) \,\mathrm dx - \mu x^2\,\mathrm dy = 0

*is* exact. If this modified DE is exact, then

\dfrac{\partial\left(\mu\left(x^2y+e^x\right)\right)}{\partial y} = \dfrac{\partial\left(-\mu x^2\right)}{\partial x}

We have

\dfrac{\partial\left(\mu\left(x^2y+e^x\right)\right)}{\partial y} = \left(x^2y+e^x\right)\dfrac{\partial\mu}{\partial y} + x^2\mu \\\\ \dfrac{\partial\left(-\mu x^2\right)}{\partial x} = -x^2\dfrac{\partial\mu}{\partial x} - 2x\mu \\\\ \implies \left(x^2y+e^x\right)\dfrac{\partial\mu}{\partial y} + x^2\mu = -x^2\dfrac{\partial\mu}{\partial x} - 2x\mu

Notice that if we let <em>µ(x, y)</em> = <em>µ(x)</em> be independent of <em>y</em>, then <em>∂µ/∂y</em> = 0 and we can solve for <em>µ</em> :

x^2\mu = -x^2\dfrac{\mathrm d\mu}{\mathrm dx} - 2x\mu \\\\ (x^2+2x)\mu = -x^2\dfrac{\mathrm d\mu}{\mathrm dx} \\\\ \dfrac{\mathrm d\mu}{\mu} = -\dfrac{x^2+2x}{x^2}\,\mathrm dx \\\\ \dfrac{\mathrm d\mu}{\mu} = \left(-1-\dfrac2x\right)\,\mathrm dx \\\\ \implies \ln|\mu| = -x - 2\ln|x| \\\\ \implies \mu = e^{-x-2\ln|x|} = \dfrac{e^{-x}}{x^2}

The modified DE,

\left(e^{-x}y + \dfrac1{x^2}\right) \,\mathrm dx - e^{-x}\,\mathrm dy = 0

is now exact:

\dfrac{\partial\left(e^{-x}y+\frac1{x^2}\right)}{\partial y} = e^{-x} \\\\ \dfrac{\partial\left(-e^{-x}\right)}{\partial x} = e^{-x}

So we look for a solution of the form <em>F(x, y)</em> = <em>C</em>. This solution is such that

\dfrac{\partial F}{\partial x} = e^{-x}y + \dfrac1{x^2} \\\\ \dfrac{\partial F}{\partial y} = e^{-x}

Integrate both sides of the first condition with respect to <em>x</em> :

F(x,y) = -e^{-x}y - \dfrac1x + g(y)

Differentiate both sides of this with respect to <em>y</em> :

\dfrac{\partial F}{\partial y} = -e^{-x}+\dfrac{\mathrm dg}{\mathrm dy} = e^{-x} \\\\ \implies \dfrac{\mathrm dg}{\mathrm dy} = 0 \implies g(y) = C

Then the general solution to the DE is

F(x,y) = \boxed{-e^{-x}y-\dfrac1x = C}

5 0
3 years ago
I need help on this.​
ale4655 [162]

Answer:

the x should be 10x7-(9x6)

Step-by-step explanation:

because it should be 10x7-(4+30)

3 0
2 years ago
Read 2 more answers
What is a distance formula?
ludmilkaskok [199]
That is a distance formula I was gonna type it but I didn’t have the symbols so use the picture attached.

6 0
2 years ago
Other questions:
  • A school administrator is interested in estimating the proportion of students in the district who participate in community servi
    10·1 answer
  • Which of the following is true of any regular polygon? It is equilateral. It is equiangular. Its angles sum to 360 degrees.
    9·1 answer
  • Solve for x. −7≥13−5x
    7·2 answers
  • Solve the equation. -4(3 - 2x) + 2x = 2x - 8 A) x = 2 B) x = -1 C) x = 1/ 2 D) x = 1/ 3
    9·2 answers
  • What is the ordinate of the point where the graph of the<br> equation y = 5x + 2 crosses the y-axis?
    7·1 answer
  • In the following scenario for a hypothesis test for a population? mean, decide whether the? z-test is an appropriate method for
    11·1 answer
  • The committee spends $444 on costumes for 24 people. Each costume costs the same amount of money. How much did each costume cost
    11·1 answer
  • Find the surface area of the composite figure
    7·2 answers
  • Alex had $29 in a bank account. He withdrew $13 for pizza and then $18 for a movie. How much money does Alex have left in his ac
    15·2 answers
  • Goofy's fast food center wishes to estimate the proportion of people in its city that will purchase its products. Suppose the tr
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!