Answer:
13.7m
Explanation:
Since there's no external force acting on the astronaut or the satellite, the momentum must be conserved before and after the push. Since both are at rest before, momentum is 0.
After the push

Where
is the mass of the astronaut,
is the mass of the satellite,
is the speed of the satellite. We can calculate the speed
of the astronaut:

So the astronaut has a opposite direction with the satellite motion, which is further away from the shuttle. Since it takes 7.5 s for the astronaut to make contact with the shuttle, the distance would be
d = vt = 1.83 * 7.5 = 13.7 m
Answer: A voltmeter must have a high resistance where as an ammeter must have a low resistance.
Explanation:
A voltmeter is a device which is connected in parallel to the component across which voltage needs to be measured. In a parallel circuit voltage drop is same at the nodes. The parallel connection must not offer easier path for current to divert from the main circuit and travel. Thus, a voltmeter must have high resistance.
On the other hand, an ammeter which is used to measure current in the circuit must have low resistance as it is connected in series. It should not offer resistance as it would reduce the actual current and measurement would be inaccurate.
By dropping a ball and seeing how long it takes to hit the ground or throw a ball up and time it as well
Answer:
9241.6 W or 12.39318 hp
Explanation:
u = Initial velocity = 0
v = Final velocity
m = Mass
t = Time taken
Energy

Power

Converting to hp


The power developed by the cheetah is 9241.6 W or 12.39318 hp