Answer:
Qp > Kp, por lo tanto, la presión parcial de BrF₃(g) aumenta hasta alcanzar el equilibrio.
Explanation:
Paso 1: Escribir la ecuación balanceada
BrF₃ (g) ⇌ BrF(g) + F₂(g)      Kp(T) = 64,0
Paso 2: Calcular el cociente de reacción (Qp)
Qp = pBrF × pF₂ / pBrF₃
Qp = 1,50 × 2,00 / 0,0150 = 200
Paso 3: Sacar una conclusión
Dado que Qp > Kp, la reacción se desplazará hacia la izquierda para alcanzar el equilibrio, es decir, la presión parcial de BrF₃(g) aumenta hasta alcanzar el equilibrio.
 
        
             
        
        
        
Answer:
1. Watt stream engine 
2. McCormick reaper 
3. Fulton steamboat
These are the correct answers. 
 Have A good day!!  :)
 
        
                    
             
        
        
        
This is a basic orbital diagram for carbon
 
        
             
        
        
        
Explanation:
To answer this question, we'll need to use the Ideal Gas Law:
p
V
=
n
R
T
 ,
where 
p
 is pressure, 
V
 is volume, 
n
 is the number of moles 
R
 is the gas constant, and 
T
 is temperature in Kelvin.
The question already gives us the values for 
p
 and 
T
 , because helium is at STP. This means that temperature is 
273.15 K
 and pressure is 
1 atm
 .
We also already know the gas constant. In our case, we'll use the value of 
0.08206 L atm/K mol
 since these units fit the units of our given values the best.
We can find the value for 
n
 by dividing the mass of helium gas by its molar mass:
n
=
number of moles
=
mass of sample
molar mass
 
=
6.00 g
4.00 g/mol
=
1.50 mol
 
Now, we can just plug all of these values in and solve for 
V
 :
p
V
=
n
R
T
 
V
=
n
R
T
p
=
1.50 mol
×
0.08206 L atm/K mol
×
273.15 K
1 atm
= 33.6 L
this is not the answer but it will help you
do by the formula it is on the answer